 LAPACK  3.10.0 LAPACK: Linear Algebra PACKage

◆ dckgsv()

 subroutine dckgsv ( integer NM, integer, dimension( * ) MVAL, integer, dimension( * ) PVAL, integer, dimension( * ) NVAL, integer NMATS, integer, dimension( 4 ) ISEED, double precision THRESH, integer NMAX, double precision, dimension( * ) A, double precision, dimension( * ) AF, double precision, dimension( * ) B, double precision, dimension( * ) BF, double precision, dimension( * ) U, double precision, dimension( * ) V, double precision, dimension( * ) Q, double precision, dimension( * ) ALPHA, double precision, dimension( * ) BETA, double precision, dimension( * ) R, integer, dimension( * ) IWORK, double precision, dimension( * ) WORK, double precision, dimension( * ) RWORK, integer NIN, integer NOUT, integer INFO )

DCKGSV

Purpose:
DCKGSV tests DGGSVD:
the GSVD for M-by-N matrix A and P-by-N matrix B.
Parameters
 [in] NM NM is INTEGER The number of values of M contained in the vector MVAL. [in] MVAL MVAL is INTEGER array, dimension (NM) The values of the matrix row dimension M. [in] PVAL PVAL is INTEGER array, dimension (NP) The values of the matrix row dimension P. [in] NVAL NVAL is INTEGER array, dimension (NN) The values of the matrix column dimension N. [in] NMATS NMATS is INTEGER The number of matrix types to be tested for each combination of matrix dimensions. If NMATS >= NTYPES (the maximum number of matrix types), then all the different types are generated for testing. If NMATS < NTYPES, another input line is read to get the numbers of the matrix types to be used. [in,out] ISEED ISEED is INTEGER array, dimension (4) On entry, the seed of the random number generator. The array elements should be between 0 and 4095, otherwise they will be reduced mod 4096, and ISEED(4) must be odd. On exit, the next seed in the random number sequence after all the test matrices have been generated. [in] THRESH THRESH is DOUBLE PRECISION The threshold value for the test ratios. A result is included in the output file if RESULT >= THRESH. To have every test ratio printed, use THRESH = 0. [in] NMAX NMAX is INTEGER The maximum value permitted for M or N, used in dimensioning the work arrays. [out] A A is DOUBLE PRECISION array, dimension (NMAX*NMAX) [out] AF AF is DOUBLE PRECISION array, dimension (NMAX*NMAX) [out] B B is DOUBLE PRECISION array, dimension (NMAX*NMAX) [out] BF BF is DOUBLE PRECISION array, dimension (NMAX*NMAX) [out] U U is DOUBLE PRECISION array, dimension (NMAX*NMAX) [out] V V is DOUBLE PRECISION array, dimension (NMAX*NMAX) [out] Q Q is DOUBLE PRECISION array, dimension (NMAX*NMAX) [out] ALPHA ALPHA is DOUBLE PRECISION array, dimension (NMAX) [out] BETA BETA is DOUBLE PRECISION array, dimension (NMAX) [out] R R is DOUBLE PRECISION array, dimension (NMAX*NMAX) [out] IWORK IWORK is INTEGER array, dimension (NMAX) [out] WORK WORK is DOUBLE PRECISION array, dimension (NMAX*NMAX) [out] RWORK RWORK is DOUBLE PRECISION array, dimension (NMAX) [in] NIN NIN is INTEGER The unit number for input. [in] NOUT NOUT is INTEGER The unit number for output. [out] INFO INFO is INTEGER = 0 : successful exit > 0 : If DLATMS returns an error code, the absolute value of it is returned.

Definition at line 195 of file dckgsv.f.

198 *
199 * -- LAPACK test routine --
200 * -- LAPACK is a software package provided by Univ. of Tennessee, --
201 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
202 *
203 * .. Scalar Arguments ..
204  INTEGER INFO, NIN, NM, NMATS, NMAX, NOUT
205  DOUBLE PRECISION THRESH
206 * ..
207 * .. Array Arguments ..
208  INTEGER ISEED( 4 ), IWORK( * ), MVAL( * ), NVAL( * ),
209  \$ PVAL( * )
210  DOUBLE PRECISION A( * ), AF( * ), ALPHA( * ), B( * ), BETA( * ),
211  \$ BF( * ), Q( * ), R( * ), RWORK( * ), U( * ),
212  \$ V( * ), WORK( * )
213 * ..
214 *
215 * =====================================================================
216 *
217 * .. Parameters ..
218  INTEGER NTESTS
219  parameter( ntests = 12 )
220  INTEGER NTYPES
221  parameter( ntypes = 8 )
222 * ..
223 * .. Local Scalars ..
224  LOGICAL FIRSTT
225  CHARACTER DISTA, DISTB, TYPE
226  CHARACTER*3 PATH
227  INTEGER I, IINFO, IM, IMAT, KLA, KLB, KUA, KUB, LDA,
228  \$ LDB, LDQ, LDR, LDU, LDV, LWORK, M, MODEA,
229  \$ MODEB, N, NFAIL, NRUN, NT, P
230  DOUBLE PRECISION ANORM, BNORM, CNDNMA, CNDNMB
231 * ..
232 * .. Local Arrays ..
233  LOGICAL DOTYPE( NTYPES )
234  DOUBLE PRECISION RESULT( NTESTS )
235 * ..
236 * .. External Subroutines ..
237  EXTERNAL alahdg, alareq, alasum, dgsvts3, dlatb9, dlatms
238 * ..
239 * .. Intrinsic Functions ..
240  INTRINSIC abs
241 * ..
242 * .. Executable Statements ..
243 *
244 * Initialize constants and the random number seed.
245 *
246  path( 1: 3 ) = 'GSV'
247  info = 0
248  nrun = 0
249  nfail = 0
250  firstt = .true.
251  CALL alareq( path, nmats, dotype, ntypes, nin, nout )
252  lda = nmax
253  ldb = nmax
254  ldu = nmax
255  ldv = nmax
256  ldq = nmax
257  ldr = nmax
258  lwork = nmax*nmax
259 *
260 * Do for each value of M in MVAL.
261 *
262  DO 30 im = 1, nm
263  m = mval( im )
264  p = pval( im )
265  n = nval( im )
266 *
267  DO 20 imat = 1, ntypes
268 *
269 * Do the tests only if DOTYPE( IMAT ) is true.
270 *
271  IF( .NOT.dotype( imat ) )
272  \$ GO TO 20
273 *
274 * Set up parameters with DLATB9 and generate test
275 * matrices A and B with DLATMS.
276 *
277  CALL dlatb9( path, imat, m, p, n, TYPE, KLA, KUA, KLB, KUB,
278  \$ ANORM, BNORM, MODEA, MODEB, CNDNMA, CNDNMB,
279  \$ DISTA, DISTB )
280 *
281 * Generate M by N matrix A
282 *
283  CALL dlatms( m, n, dista, iseed, TYPE, RWORK, MODEA, CNDNMA,
284  \$ ANORM, KLA, KUA, 'No packing', A, LDA, WORK,
285  \$ IINFO )
286  IF( iinfo.NE.0 ) THEN
287  WRITE( nout, fmt = 9999 )iinfo
288  info = abs( iinfo )
289  GO TO 20
290  END IF
291 *
292  CALL dlatms( p, n, distb, iseed, TYPE, RWORK, MODEB, CNDNMB,
293  \$ BNORM, KLB, KUB, 'No packing', B, LDB, WORK,
294  \$ IINFO )
295  IF( iinfo.NE.0 ) THEN
296  WRITE( nout, fmt = 9999 )iinfo
297  info = abs( iinfo )
298  GO TO 20
299  END IF
300 *
301  nt = 6
302 *
303  CALL dgsvts3( m, p, n, a, af, lda, b, bf, ldb, u, ldu, v,
304  \$ ldv, q, ldq, alpha, beta, r, ldr, iwork, work,
305  \$ lwork, rwork, result )
306 *
307 * Print information about the tests that did not
308 * pass the threshold.
309 *
310  DO 10 i = 1, nt
311  IF( result( i ).GE.thresh ) THEN
312  IF( nfail.EQ.0 .AND. firstt ) THEN
313  firstt = .false.
314  CALL alahdg( nout, path )
315  END IF
316  WRITE( nout, fmt = 9998 )m, p, n, imat, i,
317  \$ result( i )
318  nfail = nfail + 1
319  END IF
320  10 CONTINUE
321  nrun = nrun + nt
322  20 CONTINUE
323  30 CONTINUE
324 *
325 * Print a summary of the results.
326 *
327  CALL alasum( path, nout, nfail, nrun, 0 )
328 *
329  9999 FORMAT( ' DLATMS in DCKGSV INFO = ', i5 )
330  9998 FORMAT( ' M=', i4, ' P=', i4, ', N=', i4, ', type ', i2,
331  \$ ', test ', i2, ', ratio=', g13.6 )
332  RETURN
333 *
334 * End of DCKGSV
335 *
subroutine alareq(PATH, NMATS, DOTYPE, NTYPES, NIN, NOUT)
ALAREQ
Definition: alareq.f:90
subroutine alahdg(IOUNIT, PATH)
ALAHDG
Definition: alahdg.f:62
subroutine alasum(TYPE, NOUT, NFAIL, NRUN, NERRS)
ALASUM
Definition: alasum.f:73
subroutine dgsvts3(M, P, N, A, AF, LDA, B, BF, LDB, U, LDU, V, LDV, Q, LDQ, ALPHA, BETA, R, LDR, IWORK, WORK, LWORK, RWORK, RESULT)
DGSVTS3
Definition: dgsvts3.f:210
subroutine dlatb9(PATH, IMAT, M, P, N, TYPE, KLA, KUA, KLB, KUB, ANORM, BNORM, MODEA, MODEB, CNDNMA, CNDNMB, DISTA, DISTB)
DLATB9
Definition: dlatb9.f:170
subroutine dlatms(M, N, DIST, ISEED, SYM, D, MODE, COND, DMAX, KL, KU, PACK, A, LDA, WORK, INFO)
DLATMS
Definition: dlatms.f:321
Here is the call graph for this function:
Here is the caller graph for this function: