LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ cgeevx()

subroutine cgeevx ( character balanc,
character jobvl,
character jobvr,
character sense,
integer n,
complex, dimension( lda, * ) a,
integer lda,
complex, dimension( * ) w,
complex, dimension( ldvl, * ) vl,
integer ldvl,
complex, dimension( ldvr, * ) vr,
integer ldvr,
integer ilo,
integer ihi,
real, dimension( * ) scale,
real abnrm,
real, dimension( * ) rconde,
real, dimension( * ) rcondv,
complex, dimension( * ) work,
integer lwork,
real, dimension( * ) rwork,
integer info )

CGEEVX computes the eigenvalues and, optionally, the left and/or right eigenvectors for GE matrices

Download CGEEVX + dependencies [TGZ] [ZIP] [TXT]

Purpose:
!>
!> CGEEVX computes for an N-by-N complex nonsymmetric matrix A, the
!> eigenvalues and, optionally, the left and/or right eigenvectors.
!>
!> Optionally also, it computes a balancing transformation to improve
!> the conditioning of the eigenvalues and eigenvectors (ILO, IHI,
!> SCALE, and ABNRM), reciprocal condition numbers for the eigenvalues
!> (RCONDE), and reciprocal condition numbers for the right
!> eigenvectors (RCONDV).
!>
!> The right eigenvector v(j) of A satisfies
!>                  A * v(j) = lambda(j) * v(j)
!> where lambda(j) is its eigenvalue.
!> The left eigenvector u(j) of A satisfies
!>               u(j)**H * A = lambda(j) * u(j)**H
!> where u(j)**H denotes the conjugate transpose of u(j).
!>
!> The computed eigenvectors are normalized to have Euclidean norm
!> equal to 1 and largest component real.
!>
!> Balancing a matrix means permuting the rows and columns to make it
!> more nearly upper triangular, and applying a diagonal similarity
!> transformation D * A * D**(-1), where D is a diagonal matrix, to
!> make its rows and columns closer in norm and the condition numbers
!> of its eigenvalues and eigenvectors smaller.  The computed
!> reciprocal condition numbers correspond to the balanced matrix.
!> Permuting rows and columns will not change the condition numbers
!> (in exact arithmetic) but diagonal scaling will.  For further
!> explanation of balancing, see section 4.10.2 of the LAPACK
!> Users' Guide.
!> 
Parameters
[in]BALANC
!>          BALANC is CHARACTER*1
!>          Indicates how the input matrix should be diagonally scaled
!>          and/or permuted to improve the conditioning of its
!>          eigenvalues.
!>          = 'N': Do not diagonally scale or permute;
!>          = 'P': Perform permutations to make the matrix more nearly
!>                 upper triangular. Do not diagonally scale;
!>          = 'S': Diagonally scale the matrix, ie. replace A by
!>                 D*A*D**(-1), where D is a diagonal matrix chosen
!>                 to make the rows and columns of A more equal in
!>                 norm. Do not permute;
!>          = 'B': Both diagonally scale and permute A.
!>
!>          Computed reciprocal condition numbers will be for the matrix
!>          after balancing and/or permuting. Permuting does not change
!>          condition numbers (in exact arithmetic), but balancing does.
!> 
[in]JOBVL
!>          JOBVL is CHARACTER*1
!>          = 'N': left eigenvectors of A are not computed;
!>          = 'V': left eigenvectors of A are computed.
!>          If SENSE = 'E' or 'B', JOBVL must = 'V'.
!> 
[in]JOBVR
!>          JOBVR is CHARACTER*1
!>          = 'N': right eigenvectors of A are not computed;
!>          = 'V': right eigenvectors of A are computed.
!>          If SENSE = 'E' or 'B', JOBVR must = 'V'.
!> 
[in]SENSE
!>          SENSE is CHARACTER*1
!>          Determines which reciprocal condition numbers are computed.
!>          = 'N': None are computed;
!>          = 'E': Computed for eigenvalues only;
!>          = 'V': Computed for right eigenvectors only;
!>          = 'B': Computed for eigenvalues and right eigenvectors.
!>
!>          If SENSE = 'E' or 'B', both left and right eigenvectors
!>          must also be computed (JOBVL = 'V' and JOBVR = 'V').
!> 
[in]N
!>          N is INTEGER
!>          The order of the matrix A. N >= 0.
!> 
[in,out]A
!>          A is COMPLEX array, dimension (LDA,N)
!>          On entry, the N-by-N matrix A.
!>          On exit, A has been overwritten.  If JOBVL = 'V' or
!>          JOBVR = 'V', A contains the Schur form of the balanced
!>          version of the matrix A.
!> 
[in]LDA
!>          LDA is INTEGER
!>          The leading dimension of the array A.  LDA >= max(1,N).
!> 
[out]W
!>          W is COMPLEX array, dimension (N)
!>          W contains the computed eigenvalues.
!> 
[out]VL
!>          VL is COMPLEX array, dimension (LDVL,N)
!>          If JOBVL = 'V', the left eigenvectors u(j) are stored one
!>          after another in the columns of VL, in the same order
!>          as their eigenvalues.
!>          If JOBVL = 'N', VL is not referenced.
!>          u(j) = VL(:,j), the j-th column of VL.
!> 
[in]LDVL
!>          LDVL is INTEGER
!>          The leading dimension of the array VL.  LDVL >= 1; if
!>          JOBVL = 'V', LDVL >= N.
!> 
[out]VR
!>          VR is COMPLEX array, dimension (LDVR,N)
!>          If JOBVR = 'V', the right eigenvectors v(j) are stored one
!>          after another in the columns of VR, in the same order
!>          as their eigenvalues.
!>          If JOBVR = 'N', VR is not referenced.
!>          v(j) = VR(:,j), the j-th column of VR.
!> 
[in]LDVR
!>          LDVR is INTEGER
!>          The leading dimension of the array VR.  LDVR >= 1; if
!>          JOBVR = 'V', LDVR >= N.
!> 
[out]ILO
!>          ILO is INTEGER
!> 
[out]IHI
!>          IHI is INTEGER
!>          ILO and IHI are integer values determined when A was
!>          balanced.  The balanced A(i,j) = 0 if I > J and
!>          J = 1,...,ILO-1 or I = IHI+1,...,N.
!> 
[out]SCALE
!>          SCALE is REAL array, dimension (N)
!>          Details of the permutations and scaling factors applied
!>          when balancing A.  If P(j) is the index of the row and column
!>          interchanged with row and column j, and D(j) is the scaling
!>          factor applied to row and column j, then
!>          SCALE(J) = P(J),    for J = 1,...,ILO-1
!>                   = D(J),    for J = ILO,...,IHI
!>                   = P(J)     for J = IHI+1,...,N.
!>          The order in which the interchanges are made is N to IHI+1,
!>          then 1 to ILO-1.
!> 
[out]ABNRM
!>          ABNRM is REAL
!>          The one-norm of the balanced matrix (the maximum
!>          of the sum of absolute values of elements of any column).
!> 
[out]RCONDE
!>          RCONDE is REAL array, dimension (N)
!>          RCONDE(j) is the reciprocal condition number of the j-th
!>          eigenvalue.
!> 
[out]RCONDV
!>          RCONDV is REAL array, dimension (N)
!>          RCONDV(j) is the reciprocal condition number of the j-th
!>          right eigenvector.
!> 
[out]WORK
!>          WORK is COMPLEX array, dimension (MAX(1,LWORK))
!>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
!> 
[in]LWORK
!>          LWORK is INTEGER
!>          The dimension of the array WORK.  If SENSE = 'N' or 'E',
!>          LWORK >= max(1,2*N), and if SENSE = 'V' or 'B',
!>          LWORK >= N*N+2*N.
!>          For good performance, LWORK must generally be larger.
!>
!>          If LWORK = -1, then a workspace query is assumed; the routine
!>          only calculates the optimal size of the WORK array, returns
!>          this value as the first entry of the WORK array, and no error
!>          message related to LWORK is issued by XERBLA.
!> 
[out]RWORK
!>          RWORK is REAL array, dimension (2*N)
!> 
[out]INFO
!>          INFO is INTEGER
!>          = 0:  successful exit
!>          < 0:  if INFO = -i, the i-th argument had an illegal value.
!>          > 0:  if INFO = i, the QR algorithm failed to compute all the
!>                eigenvalues, and no eigenvectors or condition numbers
!>                have been computed; elements 1:ILO-1 and i+1:N of W
!>                contain eigenvalues which have converged.
!> 
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.

Definition at line 283 of file cgeevx.f.

287 implicit none
288*
289* -- LAPACK driver routine --
290* -- LAPACK is a software package provided by Univ. of Tennessee, --
291* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
292*
293* .. Scalar Arguments ..
294 CHARACTER BALANC, JOBVL, JOBVR, SENSE
295 INTEGER IHI, ILO, INFO, LDA, LDVL, LDVR, LWORK, N
296 REAL ABNRM
297* ..
298* .. Array Arguments ..
299 REAL RCONDE( * ), RCONDV( * ), RWORK( * ),
300 $ SCALE( * )
301 COMPLEX A( LDA, * ), VL( LDVL, * ), VR( LDVR, * ),
302 $ W( * ), WORK( * )
303* ..
304*
305* =====================================================================
306*
307* .. Parameters ..
308 REAL ZERO, ONE
309 parameter( zero = 0.0e0, one = 1.0e0 )
310* ..
311* .. Local Scalars ..
312 LOGICAL LQUERY, SCALEA, WANTVL, WANTVR, WNTSNB, WNTSNE,
313 $ WNTSNN, WNTSNV
314 CHARACTER JOB, SIDE
315 INTEGER HSWORK, I, ICOND, IERR, ITAU, IWRK, K,
316 $ LWORK_TREVC, MAXWRK, MINWRK, NOUT
317 REAL ANRM, BIGNUM, CSCALE, EPS, SCL, SMLNUM
318 COMPLEX TMP
319* ..
320* .. Local Arrays ..
321 LOGICAL SELECT( 1 )
322 REAL DUM( 1 )
323* ..
324* .. External Subroutines ..
325 EXTERNAL slascl, xerbla, csscal,
326 $ cgebak, cgebal, cgehrd,
327 $ chseqr, clacpy, clascl,
328 $ cscal, ctrevc3, ctrsna,
329 $ cunghr
330* ..
331* .. External Functions ..
332 LOGICAL LSAME
333 INTEGER ISAMAX, ILAENV
334 REAL SLAMCH, SCNRM2, CLANGE,
335 $ SROUNDUP_LWORK
336 EXTERNAL lsame, isamax, ilaenv,
337 $ slamch, scnrm2, clange,
339* ..
340* .. Intrinsic Functions ..
341 INTRINSIC real, cmplx, conjg, aimag, max, sqrt
342* ..
343* .. Executable Statements ..
344*
345* Test the input arguments
346*
347 info = 0
348 lquery = ( lwork.EQ.-1 )
349 wantvl = lsame( jobvl, 'V' )
350 wantvr = lsame( jobvr, 'V' )
351 wntsnn = lsame( sense, 'N' )
352 wntsne = lsame( sense, 'E' )
353 wntsnv = lsame( sense, 'V' )
354 wntsnb = lsame( sense, 'B' )
355 IF( .NOT.( lsame( balanc, 'N' ) .OR.
356 $ lsame( balanc, 'S' ) .OR.
357 $ lsame( balanc, 'P' ) .OR. lsame( balanc, 'B' ) ) ) THEN
358 info = -1
359 ELSE IF( ( .NOT.wantvl ) .AND.
360 $ ( .NOT.lsame( jobvl, 'N' ) ) ) THEN
361 info = -2
362 ELSE IF( ( .NOT.wantvr ) .AND.
363 $ ( .NOT.lsame( jobvr, 'N' ) ) ) THEN
364 info = -3
365 ELSE IF( .NOT.( wntsnn .OR. wntsne .OR. wntsnb .OR. wntsnv ) .OR.
366 $ ( ( wntsne .OR. wntsnb ) .AND. .NOT.( wantvl .AND.
367 $ wantvr ) ) ) THEN
368 info = -4
369 ELSE IF( n.LT.0 ) THEN
370 info = -5
371 ELSE IF( lda.LT.max( 1, n ) ) THEN
372 info = -7
373 ELSE IF( ldvl.LT.1 .OR. ( wantvl .AND. ldvl.LT.n ) ) THEN
374 info = -10
375 ELSE IF( ldvr.LT.1 .OR. ( wantvr .AND. ldvr.LT.n ) ) THEN
376 info = -12
377 END IF
378*
379* Compute workspace
380* (Note: Comments in the code beginning "Workspace:" describe the
381* minimal amount of workspace needed at that point in the code,
382* as well as the preferred amount for good performance.
383* CWorkspace refers to complex workspace, and RWorkspace to real
384* workspace. NB refers to the optimal block size for the
385* immediately following subroutine, as returned by ILAENV.
386* HSWORK refers to the workspace preferred by CHSEQR, as
387* calculated below. HSWORK is computed assuming ILO=1 and IHI=N,
388* the worst case.)
389*
390 IF( info.EQ.0 ) THEN
391 IF( n.EQ.0 ) THEN
392 minwrk = 1
393 maxwrk = 1
394 ELSE
395 maxwrk = n + n*ilaenv( 1, 'CGEHRD', ' ', n, 1, n, 0 )
396*
397 IF( wantvl ) THEN
398 CALL ctrevc3( 'L', 'B', SELECT, n, a, lda,
399 $ vl, ldvl, vr, ldvr,
400 $ n, nout, work, -1, rwork, -1, ierr )
401 lwork_trevc = int( work(1) )
402 maxwrk = max( maxwrk, lwork_trevc )
403 CALL chseqr( 'S', 'V', n, 1, n, a, lda, w, vl, ldvl,
404 $ work, -1, info )
405 ELSE IF( wantvr ) THEN
406 CALL ctrevc3( 'R', 'B', SELECT, n, a, lda,
407 $ vl, ldvl, vr, ldvr,
408 $ n, nout, work, -1, rwork, -1, ierr )
409 lwork_trevc = int( work(1) )
410 maxwrk = max( maxwrk, lwork_trevc )
411 CALL chseqr( 'S', 'V', n, 1, n, a, lda, w, vr, ldvr,
412 $ work, -1, info )
413 ELSE
414 IF( wntsnn ) THEN
415 CALL chseqr( 'E', 'N', n, 1, n, a, lda, w, vr,
416 $ ldvr,
417 $ work, -1, info )
418 ELSE
419 CALL chseqr( 'S', 'N', n, 1, n, a, lda, w, vr,
420 $ ldvr,
421 $ work, -1, info )
422 END IF
423 END IF
424 hswork = int( work(1) )
425*
426 IF( ( .NOT.wantvl ) .AND. ( .NOT.wantvr ) ) THEN
427 minwrk = 2*n
428 IF( .NOT.( wntsnn .OR. wntsne ) )
429 $ minwrk = max( minwrk, n*n + 2*n )
430 maxwrk = max( maxwrk, hswork )
431 IF( .NOT.( wntsnn .OR. wntsne ) )
432 $ maxwrk = max( maxwrk, n*n + 2*n )
433 ELSE
434 minwrk = 2*n
435 IF( .NOT.( wntsnn .OR. wntsne ) )
436 $ minwrk = max( minwrk, n*n + 2*n )
437 maxwrk = max( maxwrk, hswork )
438 maxwrk = max( maxwrk, n + ( n - 1 )*ilaenv( 1,
439 $ 'CUNGHR',
440 $ ' ', n, 1, n, -1 ) )
441 IF( .NOT.( wntsnn .OR. wntsne ) )
442 $ maxwrk = max( maxwrk, n*n + 2*n )
443 maxwrk = max( maxwrk, 2*n )
444 END IF
445 maxwrk = max( maxwrk, minwrk )
446 END IF
447 work( 1 ) = sroundup_lwork(maxwrk)
448*
449 IF( lwork.LT.minwrk .AND. .NOT.lquery ) THEN
450 info = -20
451 END IF
452 END IF
453*
454 IF( info.NE.0 ) THEN
455 CALL xerbla( 'CGEEVX', -info )
456 RETURN
457 ELSE IF( lquery ) THEN
458 RETURN
459 END IF
460*
461* Quick return if possible
462*
463 IF( n.EQ.0 )
464 $ RETURN
465*
466* Get machine constants
467*
468 eps = slamch( 'P' )
469 smlnum = slamch( 'S' )
470 bignum = one / smlnum
471 smlnum = sqrt( smlnum ) / eps
472 bignum = one / smlnum
473*
474* Scale A if max element outside range [SMLNUM,BIGNUM]
475*
476 icond = 0
477 anrm = clange( 'M', n, n, a, lda, dum )
478 scalea = .false.
479 IF( anrm.GT.zero .AND. anrm.LT.smlnum ) THEN
480 scalea = .true.
481 cscale = smlnum
482 ELSE IF( anrm.GT.bignum ) THEN
483 scalea = .true.
484 cscale = bignum
485 END IF
486 IF( scalea )
487 $ CALL clascl( 'G', 0, 0, anrm, cscale, n, n, a, lda, ierr )
488*
489* Balance the matrix and compute ABNRM
490*
491 CALL cgebal( balanc, n, a, lda, ilo, ihi, scale, ierr )
492 abnrm = clange( '1', n, n, a, lda, dum )
493 IF( scalea ) THEN
494 dum( 1 ) = abnrm
495 CALL slascl( 'G', 0, 0, cscale, anrm, 1, 1, dum, 1, ierr )
496 abnrm = dum( 1 )
497 END IF
498*
499* Reduce to upper Hessenberg form
500* (CWorkspace: need 2*N, prefer N+N*NB)
501* (RWorkspace: none)
502*
503 itau = 1
504 iwrk = itau + n
505 CALL cgehrd( n, ilo, ihi, a, lda, work( itau ), work( iwrk ),
506 $ lwork-iwrk+1, ierr )
507*
508 IF( wantvl ) THEN
509*
510* Want left eigenvectors
511* Copy Householder vectors to VL
512*
513 side = 'L'
514 CALL clacpy( 'L', n, n, a, lda, vl, ldvl )
515*
516* Generate unitary matrix in VL
517* (CWorkspace: need 2*N-1, prefer N+(N-1)*NB)
518* (RWorkspace: none)
519*
520 CALL cunghr( n, ilo, ihi, vl, ldvl, work( itau ),
521 $ work( iwrk ),
522 $ lwork-iwrk+1, ierr )
523*
524* Perform QR iteration, accumulating Schur vectors in VL
525* (CWorkspace: need 1, prefer HSWORK (see comments) )
526* (RWorkspace: none)
527*
528 iwrk = itau
529 CALL chseqr( 'S', 'V', n, ilo, ihi, a, lda, w, vl, ldvl,
530 $ work( iwrk ), lwork-iwrk+1, info )
531*
532 IF( wantvr ) THEN
533*
534* Want left and right eigenvectors
535* Copy Schur vectors to VR
536*
537 side = 'B'
538 CALL clacpy( 'F', n, n, vl, ldvl, vr, ldvr )
539 END IF
540*
541 ELSE IF( wantvr ) THEN
542*
543* Want right eigenvectors
544* Copy Householder vectors to VR
545*
546 side = 'R'
547 CALL clacpy( 'L', n, n, a, lda, vr, ldvr )
548*
549* Generate unitary matrix in VR
550* (CWorkspace: need 2*N-1, prefer N+(N-1)*NB)
551* (RWorkspace: none)
552*
553 CALL cunghr( n, ilo, ihi, vr, ldvr, work( itau ),
554 $ work( iwrk ),
555 $ lwork-iwrk+1, ierr )
556*
557* Perform QR iteration, accumulating Schur vectors in VR
558* (CWorkspace: need 1, prefer HSWORK (see comments) )
559* (RWorkspace: none)
560*
561 iwrk = itau
562 CALL chseqr( 'S', 'V', n, ilo, ihi, a, lda, w, vr, ldvr,
563 $ work( iwrk ), lwork-iwrk+1, info )
564*
565 ELSE
566*
567* Compute eigenvalues only
568* If condition numbers desired, compute Schur form
569*
570 IF( wntsnn ) THEN
571 job = 'E'
572 ELSE
573 job = 'S'
574 END IF
575*
576* (CWorkspace: need 1, prefer HSWORK (see comments) )
577* (RWorkspace: none)
578*
579 iwrk = itau
580 CALL chseqr( job, 'N', n, ilo, ihi, a, lda, w, vr, ldvr,
581 $ work( iwrk ), lwork-iwrk+1, info )
582 END IF
583*
584* If INFO .NE. 0 from CHSEQR, then quit
585*
586 IF( info.NE.0 )
587 $ GO TO 50
588*
589 IF( wantvl .OR. wantvr ) THEN
590*
591* Compute left and/or right eigenvectors
592* (CWorkspace: need 2*N, prefer N + 2*N*NB)
593* (RWorkspace: need N)
594*
595 CALL ctrevc3( side, 'B', SELECT, n, a, lda, vl, ldvl, vr,
596 $ ldvr,
597 $ n, nout, work( iwrk ), lwork-iwrk+1,
598 $ rwork, n, ierr )
599 END IF
600*
601* Compute condition numbers if desired
602* (CWorkspace: need N*N+2*N unless SENSE = 'E')
603* (RWorkspace: need 2*N unless SENSE = 'E')
604*
605 IF( .NOT.wntsnn ) THEN
606 CALL ctrsna( sense, 'A', SELECT, n, a, lda, vl, ldvl, vr,
607 $ ldvr,
608 $ rconde, rcondv, n, nout, work( iwrk ), n, rwork,
609 $ icond )
610 END IF
611*
612 IF( wantvl ) THEN
613*
614* Undo balancing of left eigenvectors
615*
616 CALL cgebak( balanc, 'L', n, ilo, ihi, scale, n, vl, ldvl,
617 $ ierr )
618*
619* Normalize left eigenvectors and make largest component real
620*
621 DO 20 i = 1, n
622 scl = one / scnrm2( n, vl( 1, i ), 1 )
623 CALL csscal( n, scl, vl( 1, i ), 1 )
624 DO 10 k = 1, n
625 rwork( k ) = real( vl( k, i ) )**2 +
626 $ aimag( vl( k, i ) )**2
627 10 CONTINUE
628 k = isamax( n, rwork, 1 )
629 tmp = conjg( vl( k, i ) ) / sqrt( rwork( k ) )
630 CALL cscal( n, tmp, vl( 1, i ), 1 )
631 vl( k, i ) = cmplx( real( vl( k, i ) ), zero )
632 20 CONTINUE
633 END IF
634*
635 IF( wantvr ) THEN
636*
637* Undo balancing of right eigenvectors
638*
639 CALL cgebak( balanc, 'R', n, ilo, ihi, scale, n, vr, ldvr,
640 $ ierr )
641*
642* Normalize right eigenvectors and make largest component real
643*
644 DO 40 i = 1, n
645 scl = one / scnrm2( n, vr( 1, i ), 1 )
646 CALL csscal( n, scl, vr( 1, i ), 1 )
647 DO 30 k = 1, n
648 rwork( k ) = real( vr( k, i ) )**2 +
649 $ aimag( vr( k, i ) )**2
650 30 CONTINUE
651 k = isamax( n, rwork, 1 )
652 tmp = conjg( vr( k, i ) ) / sqrt( rwork( k ) )
653 CALL cscal( n, tmp, vr( 1, i ), 1 )
654 vr( k, i ) = cmplx( real( vr( k, i ) ), zero )
655 40 CONTINUE
656 END IF
657*
658* Undo scaling if necessary
659*
660 50 CONTINUE
661 IF( scalea ) THEN
662 CALL clascl( 'G', 0, 0, cscale, anrm, n-info, 1,
663 $ w( info+1 ),
664 $ max( n-info, 1 ), ierr )
665 IF( info.EQ.0 ) THEN
666 IF( ( wntsnv .OR. wntsnb ) .AND. icond.EQ.0 )
667 $ CALL slascl( 'G', 0, 0, cscale, anrm, n, 1, rcondv, n,
668 $ ierr )
669 ELSE
670 CALL clascl( 'G', 0, 0, cscale, anrm, ilo-1, 1, w, n,
671 $ ierr )
672 END IF
673 END IF
674*
675 work( 1 ) = sroundup_lwork(maxwrk)
676 RETURN
677*
678* End of CGEEVX
679*
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine cgebak(job, side, n, ilo, ihi, scale, m, v, ldv, info)
CGEBAK
Definition cgebak.f:129
subroutine cgebal(job, n, a, lda, ilo, ihi, scale, info)
CGEBAL
Definition cgebal.f:163
subroutine cgehrd(n, ilo, ihi, a, lda, tau, work, lwork, info)
CGEHRD
Definition cgehrd.f:166
subroutine chseqr(job, compz, n, ilo, ihi, h, ldh, w, z, ldz, work, lwork, info)
CHSEQR
Definition chseqr.f:297
integer function isamax(n, sx, incx)
ISAMAX
Definition isamax.f:71
integer function ilaenv(ispec, name, opts, n1, n2, n3, n4)
ILAENV
Definition ilaenv.f:160
subroutine clacpy(uplo, m, n, a, lda, b, ldb)
CLACPY copies all or part of one two-dimensional array to another.
Definition clacpy.f:101
real function slamch(cmach)
SLAMCH
Definition slamch.f:68
real function clange(norm, m, n, a, lda, work)
CLANGE returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value ...
Definition clange.f:113
subroutine clascl(type, kl, ku, cfrom, cto, m, n, a, lda, info)
CLASCL multiplies a general rectangular matrix by a real scalar defined as cto/cfrom.
Definition clascl.f:142
subroutine slascl(type, kl, ku, cfrom, cto, m, n, a, lda, info)
SLASCL multiplies a general rectangular matrix by a real scalar defined as cto/cfrom.
Definition slascl.f:142
logical function lsame(ca, cb)
LSAME
Definition lsame.f:48
real(wp) function scnrm2(n, x, incx)
SCNRM2
Definition scnrm2.f90:90
real function sroundup_lwork(lwork)
SROUNDUP_LWORK
subroutine csscal(n, sa, cx, incx)
CSSCAL
Definition csscal.f:78
subroutine cscal(n, ca, cx, incx)
CSCAL
Definition cscal.f:78
subroutine ctrevc3(side, howmny, select, n, t, ldt, vl, ldvl, vr, ldvr, mm, m, work, lwork, rwork, lrwork, info)
CTREVC3
Definition ctrevc3.f:243
subroutine ctrsna(job, howmny, select, n, t, ldt, vl, ldvl, vr, ldvr, s, sep, mm, m, work, ldwork, rwork, info)
CTRSNA
Definition ctrsna.f:248
subroutine cunghr(n, ilo, ihi, a, lda, tau, work, lwork, info)
CUNGHR
Definition cunghr.f:125
Here is the call graph for this function:
Here is the caller graph for this function: