490 SUBROUTINE cposvxx( FACT, UPLO, N, NRHS, A, LDA, AF, LDAF,
492 $ S, B, LDB, X, LDX, RCOND, RPVGRW, BERR,
493 $ N_ERR_BNDS, ERR_BNDS_NORM, ERR_BNDS_COMP,
494 $ NPARAMS, PARAMS, WORK, RWORK, INFO )
501 CHARACTER EQUED, FACT, UPLO
502 INTEGER INFO, LDA, LDAF, LDB, LDX, N, NRHS, NPARAMS,
507 COMPLEX A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
508 $ work( * ), x( ldx, * )
509 REAL S( * ), PARAMS( * ), BERR( * ), RWORK( * ),
510 $ ERR_BNDS_NORM( NRHS, * ),
511 $ err_bnds_comp( nrhs, * )
518 PARAMETER ( ZERO = 0.0e+0, one = 1.0e+0 )
519 INTEGER FINAL_NRM_ERR_I, FINAL_CMP_ERR_I, BERR_I
520 INTEGER RCOND_I, NRM_RCOND_I, NRM_ERR_I, CMP_RCOND_I
521 INTEGER CMP_ERR_I, PIV_GROWTH_I
522 parameter( final_nrm_err_i = 1, final_cmp_err_i = 2,
524 parameter( rcond_i = 4, nrm_rcond_i = 5, nrm_err_i = 6 )
525 parameter( cmp_rcond_i = 7, cmp_err_i = 8,
529 LOGICAL EQUIL, NOFACT, RCEQU
531 REAL AMAX, BIGNUM, SMIN, SMAX, SCOND, SMLNUM
536 REAL SLAMCH, CLA_PORPVGRW
548 nofact = lsame( fact,
'N' )
549 equil = lsame( fact,
'E' )
550 smlnum = slamch(
'Safe minimum' )
551 bignum = one / smlnum
552 IF( nofact .OR. equil )
THEN
556 rcequ = lsame( equed,
'Y' )
567 IF( .NOT.nofact .AND. .NOT.equil .AND. .NOT.
568 $ lsame( fact,
'F' ) )
THEN
570 ELSE IF( .NOT.lsame( uplo,
'U' ) .AND.
571 $ .NOT.lsame( uplo,
'L' ) )
THEN
573 ELSE IF( n.LT.0 )
THEN
575 ELSE IF( nrhs.LT.0 )
THEN
577 ELSE IF( lda.LT.max( 1, n ) )
THEN
579 ELSE IF( ldaf.LT.max( 1, n ) )
THEN
581 ELSE IF( lsame( fact,
'F' ) .AND. .NOT.
582 $ ( rcequ .OR. lsame( equed,
'N' ) ) )
THEN
589 smin = min( smin, s( j ) )
590 smax = max( smax, s( j ) )
592 IF( smin.LE.zero )
THEN
594 ELSE IF( n.GT.0 )
THEN
595 scond = max( smin, smlnum ) / min( smax, bignum )
601 IF( ldb.LT.max( 1, n ) )
THEN
603 ELSE IF( ldx.LT.max( 1, n ) )
THEN
610 CALL xerbla(
'CPOSVXX', -info )
618 CALL cpoequb( n, a, lda, s, scond, amax, infequ )
619 IF( infequ.EQ.0 )
THEN
623 CALL claqhe( uplo, n, a, lda, s, scond, amax, equed )
624 rcequ = lsame( equed,
'Y' )
630 IF( rcequ )
CALL clascl2( n, nrhs, s, b, ldb )
632 IF( nofact .OR. equil )
THEN
636 CALL clacpy( uplo, n, n, a, lda, af, ldaf )
637 CALL cpotrf( uplo, n, af, ldaf, info )
647 rpvgrw = cla_porpvgrw( uplo, n, a, lda, af, ldaf, rwork )
654 rpvgrw = cla_porpvgrw( uplo, n, a, lda, af, ldaf, rwork )
658 CALL clacpy(
'Full', n, nrhs, b, ldb, x, ldx )
659 CALL cpotrs( uplo, n, nrhs, af, ldaf, x, ldx, info )
664 CALL cporfsx( uplo, equed, n, nrhs, a, lda, af, ldaf,
665 $ s, b, ldb, x, ldx, rcond, berr, n_err_bnds, err_bnds_norm,
666 $ err_bnds_comp, nparams, params, work, rwork, info )
672 CALL clascl2( n, nrhs, s, x, ldx )
subroutine cporfsx(uplo, equed, n, nrhs, a, lda, af, ldaf, s, b, ldb, x, ldx, rcond, berr, n_err_bnds, err_bnds_norm, err_bnds_comp, nparams, params, work, rwork, info)
CPORFSX
subroutine cposvxx(fact, uplo, n, nrhs, a, lda, af, ldaf, equed, s, b, ldb, x, ldx, rcond, rpvgrw, berr, n_err_bnds, err_bnds_norm, err_bnds_comp, nparams, params, work, rwork, info)
CPOSVXX computes the solution to system of linear equations A * X = B for PO matrices