LAPACK  3.9.1
LAPACK: Linear Algebra PACKage

◆ zlatdf()

subroutine zlatdf ( integer  IJOB,
integer  N,
complex*16, dimension( ldz, * )  Z,
integer  LDZ,
complex*16, dimension( * )  RHS,
double precision  RDSUM,
double precision  RDSCAL,
integer, dimension( * )  IPIV,
integer, dimension( * )  JPIV 
)

ZLATDF uses the LU factorization of the n-by-n matrix computed by sgetc2 and computes a contribution to the reciprocal Dif-estimate.

Download ZLATDF + dependencies [TGZ] [ZIP] [TXT]

Purpose:
 ZLATDF computes the contribution to the reciprocal Dif-estimate
 by solving for x in Z * x = b, where b is chosen such that the norm
 of x is as large as possible. It is assumed that LU decomposition
 of Z has been computed by ZGETC2. On entry RHS = f holds the
 contribution from earlier solved sub-systems, and on return RHS = x.

 The factorization of Z returned by ZGETC2 has the form
 Z = P * L * U * Q, where P and Q are permutation matrices. L is lower
 triangular with unit diagonal elements and U is upper triangular.
Parameters
[in]IJOB
          IJOB is INTEGER
          IJOB = 2: First compute an approximative null-vector e
              of Z using ZGECON, e is normalized and solve for
              Zx = +-e - f with the sign giving the greater value of
              2-norm(x).  About 5 times as expensive as Default.
          IJOB .ne. 2: Local look ahead strategy where
              all entries of the r.h.s. b is chosen as either +1 or
              -1.  Default.
[in]N
          N is INTEGER
          The number of columns of the matrix Z.
[in]Z
          Z is COMPLEX*16 array, dimension (LDZ, N)
          On entry, the LU part of the factorization of the n-by-n
          matrix Z computed by ZGETC2:  Z = P * L * U * Q
[in]LDZ
          LDZ is INTEGER
          The leading dimension of the array Z.  LDA >= max(1, N).
[in,out]RHS
          RHS is COMPLEX*16 array, dimension (N).
          On entry, RHS contains contributions from other subsystems.
          On exit, RHS contains the solution of the subsystem with
          entries according to the value of IJOB (see above).
[in,out]RDSUM
          RDSUM is DOUBLE PRECISION
          On entry, the sum of squares of computed contributions to
          the Dif-estimate under computation by ZTGSYL, where the
          scaling factor RDSCAL (see below) has been factored out.
          On exit, the corresponding sum of squares updated with the
          contributions from the current sub-system.
          If TRANS = 'T' RDSUM is not touched.
          NOTE: RDSUM only makes sense when ZTGSY2 is called by CTGSYL.
[in,out]RDSCAL
          RDSCAL is DOUBLE PRECISION
          On entry, scaling factor used to prevent overflow in RDSUM.
          On exit, RDSCAL is updated w.r.t. the current contributions
          in RDSUM.
          If TRANS = 'T', RDSCAL is not touched.
          NOTE: RDSCAL only makes sense when ZTGSY2 is called by
          ZTGSYL.
[in]IPIV
          IPIV is INTEGER array, dimension (N).
          The pivot indices; for 1 <= i <= N, row i of the
          matrix has been interchanged with row IPIV(i).
[in]JPIV
          JPIV is INTEGER array, dimension (N).
          The pivot indices; for 1 <= j <= N, column j of the
          matrix has been interchanged with column JPIV(j).
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Further Details:
This routine is a further developed implementation of algorithm BSOLVE in [1] using complete pivoting in the LU factorization.
Contributors:
Bo Kagstrom and Peter Poromaa, Department of Computing Science, Umea University, S-901 87 Umea, Sweden.
References:
[1] Bo Kagstrom and Lars Westin, Generalized Schur Methods with Condition Estimators for Solving the Generalized Sylvester Equation, IEEE Transactions on Automatic Control, Vol. 34, No. 7, July 1989, pp 745-751.
[2] Peter Poromaa, On Efficient and Robust Estimators for the Separation between two Regular Matrix Pairs with Applications in Condition Estimation. Report UMINF-95.05, Department of Computing Science, Umea University, S-901 87 Umea, Sweden, 1995.

Definition at line 167 of file zlatdf.f.

169 *
170 * -- LAPACK auxiliary routine --
171 * -- LAPACK is a software package provided by Univ. of Tennessee, --
172 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
173 *
174 * .. Scalar Arguments ..
175  INTEGER IJOB, LDZ, N
176  DOUBLE PRECISION RDSCAL, RDSUM
177 * ..
178 * .. Array Arguments ..
179  INTEGER IPIV( * ), JPIV( * )
180  COMPLEX*16 RHS( * ), Z( LDZ, * )
181 * ..
182 *
183 * =====================================================================
184 *
185 * .. Parameters ..
186  INTEGER MAXDIM
187  parameter( maxdim = 2 )
188  DOUBLE PRECISION ZERO, ONE
189  parameter( zero = 0.0d+0, one = 1.0d+0 )
190  COMPLEX*16 CONE
191  parameter( cone = ( 1.0d+0, 0.0d+0 ) )
192 * ..
193 * .. Local Scalars ..
194  INTEGER I, INFO, J, K
195  DOUBLE PRECISION RTEMP, SCALE, SMINU, SPLUS
196  COMPLEX*16 BM, BP, PMONE, TEMP
197 * ..
198 * .. Local Arrays ..
199  DOUBLE PRECISION RWORK( MAXDIM )
200  COMPLEX*16 WORK( 4*MAXDIM ), XM( MAXDIM ), XP( MAXDIM )
201 * ..
202 * .. External Subroutines ..
203  EXTERNAL zaxpy, zcopy, zgecon, zgesc2, zlassq, zlaswp,
204  $ zscal
205 * ..
206 * .. External Functions ..
207  DOUBLE PRECISION DZASUM
208  COMPLEX*16 ZDOTC
209  EXTERNAL dzasum, zdotc
210 * ..
211 * .. Intrinsic Functions ..
212  INTRINSIC abs, dble, sqrt
213 * ..
214 * .. Executable Statements ..
215 *
216  IF( ijob.NE.2 ) THEN
217 *
218 * Apply permutations IPIV to RHS
219 *
220  CALL zlaswp( 1, rhs, ldz, 1, n-1, ipiv, 1 )
221 *
222 * Solve for L-part choosing RHS either to +1 or -1.
223 *
224  pmone = -cone
225  DO 10 j = 1, n - 1
226  bp = rhs( j ) + cone
227  bm = rhs( j ) - cone
228  splus = one
229 *
230 * Lockahead for L- part RHS(1:N-1) = +-1
231 * SPLUS and SMIN computed more efficiently than in BSOLVE[1].
232 *
233  splus = splus + dble( zdotc( n-j, z( j+1, j ), 1, z( j+1,
234  $ j ), 1 ) )
235  sminu = dble( zdotc( n-j, z( j+1, j ), 1, rhs( j+1 ), 1 ) )
236  splus = splus*dble( rhs( j ) )
237  IF( splus.GT.sminu ) THEN
238  rhs( j ) = bp
239  ELSE IF( sminu.GT.splus ) THEN
240  rhs( j ) = bm
241  ELSE
242 *
243 * In this case the updating sums are equal and we can
244 * choose RHS(J) +1 or -1. The first time this happens we
245 * choose -1, thereafter +1. This is a simple way to get
246 * good estimates of matrices like Byers well-known example
247 * (see [1]). (Not done in BSOLVE.)
248 *
249  rhs( j ) = rhs( j ) + pmone
250  pmone = cone
251  END IF
252 *
253 * Compute the remaining r.h.s.
254 *
255  temp = -rhs( j )
256  CALL zaxpy( n-j, temp, z( j+1, j ), 1, rhs( j+1 ), 1 )
257  10 CONTINUE
258 *
259 * Solve for U- part, lockahead for RHS(N) = +-1. This is not done
260 * In BSOLVE and will hopefully give us a better estimate because
261 * any ill-conditioning of the original matrix is transferred to U
262 * and not to L. U(N, N) is an approximation to sigma_min(LU).
263 *
264  CALL zcopy( n-1, rhs, 1, work, 1 )
265  work( n ) = rhs( n ) + cone
266  rhs( n ) = rhs( n ) - cone
267  splus = zero
268  sminu = zero
269  DO 30 i = n, 1, -1
270  temp = cone / z( i, i )
271  work( i ) = work( i )*temp
272  rhs( i ) = rhs( i )*temp
273  DO 20 k = i + 1, n
274  work( i ) = work( i ) - work( k )*( z( i, k )*temp )
275  rhs( i ) = rhs( i ) - rhs( k )*( z( i, k )*temp )
276  20 CONTINUE
277  splus = splus + abs( work( i ) )
278  sminu = sminu + abs( rhs( i ) )
279  30 CONTINUE
280  IF( splus.GT.sminu )
281  $ CALL zcopy( n, work, 1, rhs, 1 )
282 *
283 * Apply the permutations JPIV to the computed solution (RHS)
284 *
285  CALL zlaswp( 1, rhs, ldz, 1, n-1, jpiv, -1 )
286 *
287 * Compute the sum of squares
288 *
289  CALL zlassq( n, rhs, 1, rdscal, rdsum )
290  RETURN
291  END IF
292 *
293 * ENTRY IJOB = 2
294 *
295 * Compute approximate nullvector XM of Z
296 *
297  CALL zgecon( 'I', n, z, ldz, one, rtemp, work, rwork, info )
298  CALL zcopy( n, work( n+1 ), 1, xm, 1 )
299 *
300 * Compute RHS
301 *
302  CALL zlaswp( 1, xm, ldz, 1, n-1, ipiv, -1 )
303  temp = cone / sqrt( zdotc( n, xm, 1, xm, 1 ) )
304  CALL zscal( n, temp, xm, 1 )
305  CALL zcopy( n, xm, 1, xp, 1 )
306  CALL zaxpy( n, cone, rhs, 1, xp, 1 )
307  CALL zaxpy( n, -cone, xm, 1, rhs, 1 )
308  CALL zgesc2( n, z, ldz, rhs, ipiv, jpiv, scale )
309  CALL zgesc2( n, z, ldz, xp, ipiv, jpiv, scale )
310  IF( dzasum( n, xp, 1 ).GT.dzasum( n, rhs, 1 ) )
311  $ CALL zcopy( n, xp, 1, rhs, 1 )
312 *
313 * Compute the sum of squares
314 *
315  CALL zlassq( n, rhs, 1, rdscal, rdsum )
316  RETURN
317 *
318 * End of ZLATDF
319 *
complex *16 function zdotc(N, ZX, INCX, ZY, INCY)
ZDOTC
Definition: zdotc.f:83
subroutine zaxpy(N, ZA, ZX, INCX, ZY, INCY)
ZAXPY
Definition: zaxpy.f:88
subroutine zscal(N, ZA, ZX, INCX)
ZSCAL
Definition: zscal.f:78
subroutine zcopy(N, ZX, INCX, ZY, INCY)
ZCOPY
Definition: zcopy.f:81
subroutine zgesc2(N, A, LDA, RHS, IPIV, JPIV, SCALE)
ZGESC2 solves a system of linear equations using the LU factorization with complete pivoting computed...
Definition: zgesc2.f:115
subroutine zgecon(NORM, N, A, LDA, ANORM, RCOND, WORK, RWORK, INFO)
ZGECON
Definition: zgecon.f:124
subroutine zlaswp(N, A, LDA, K1, K2, IPIV, INCX)
ZLASWP performs a series of row interchanges on a general rectangular matrix.
Definition: zlaswp.f:115
subroutine zlassq(N, X, INCX, SCALE, SUMSQ)
ZLASSQ updates a sum of squares represented in scaled form.
Definition: zlassq.f:106
double precision function dzasum(N, ZX, INCX)
DZASUM
Definition: dzasum.f:72
Here is the call graph for this function:
Here is the caller graph for this function: