LAPACK  3.6.1 LAPACK: Linear Algebra PACKage
 subroutine sdrvge ( logical, dimension( * ) DOTYPE, integer NN, integer, dimension( * ) NVAL, integer NRHS, real THRESH, logical TSTERR, integer NMAX, real, dimension( * ) A, real, dimension( * ) AFAC, real, dimension( * ) ASAV, real, dimension( * ) B, real, dimension( * ) BSAV, real, dimension( * ) X, real, dimension( * ) XACT, real, dimension( * ) S, real, dimension( * ) WORK, real, dimension( * ) RWORK, integer, dimension( * ) IWORK, integer NOUT )

SDRVGE

SDRVGEX

Purpose:
` SDRVGE tests the driver routines SGESV and -SVX.`
Parameters
 [in] DOTYPE ``` DOTYPE is LOGICAL array, dimension (NTYPES) The matrix types to be used for testing. Matrices of type j (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) = .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used.``` [in] NN ``` NN is INTEGER The number of values of N contained in the vector NVAL.``` [in] NVAL ``` NVAL is INTEGER array, dimension (NN) The values of the matrix column dimension N.``` [in] NRHS ``` NRHS is INTEGER The number of right hand side vectors to be generated for each linear system.``` [in] THRESH ``` THRESH is REAL The threshold value for the test ratios. A result is included in the output file if RESULT >= THRESH. To have every test ratio printed, use THRESH = 0.``` [in] TSTERR ``` TSTERR is LOGICAL Flag that indicates whether error exits are to be tested.``` [in] NMAX ``` NMAX is INTEGER The maximum value permitted for N, used in dimensioning the work arrays.``` [out] A ` A is REAL array, dimension (NMAX*NMAX)` [out] AFAC ` AFAC is REAL array, dimension (NMAX*NMAX)` [out] ASAV ` ASAV is REAL array, dimension (NMAX*NMAX)` [out] B ` B is REAL array, dimension (NMAX*NRHS)` [out] BSAV ` BSAV is REAL array, dimension (NMAX*NRHS)` [out] X ` X is REAL array, dimension (NMAX*NRHS)` [out] XACT ` XACT is REAL array, dimension (NMAX*NRHS)` [out] S ` S is REAL array, dimension (2*NMAX)` [out] WORK ``` WORK is REAL array, dimension (NMAX*max(3,NRHS))``` [out] RWORK ` RWORK is REAL array, dimension (2*NRHS+NMAX)` [out] IWORK ` IWORK is INTEGER array, dimension (2*NMAX)` [in] NOUT ``` NOUT is INTEGER The unit number for output.```
Date
November 2015
Purpose:
``` SDRVGE tests the driver routines SGESV, -SVX, and -SVXX.

Note that this file is used only when the XBLAS are available,
otherwise sdrvge.f defines this subroutine.```
Parameters
 [in] DOTYPE ``` DOTYPE is LOGICAL array, dimension (NTYPES) The matrix types to be used for testing. Matrices of type j (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) = .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used.``` [in] NN ``` NN is INTEGER The number of values of N contained in the vector NVAL.``` [in] NVAL ``` NVAL is INTEGER array, dimension (NN) The values of the matrix column dimension N.``` [in] NRHS ``` NRHS is INTEGER The number of right hand side vectors to be generated for each linear system.``` [in] THRESH ``` THRESH is REAL The threshold value for the test ratios. A result is included in the output file if RESULT >= THRESH. To have every test ratio printed, use THRESH = 0.``` [in] TSTERR ``` TSTERR is LOGICAL Flag that indicates whether error exits are to be tested.``` [in] NMAX ``` NMAX is INTEGER The maximum value permitted for N, used in dimensioning the work arrays.``` [out] A ` A is REAL array, dimension (NMAX*NMAX)` [out] AFAC ` AFAC is REAL array, dimension (NMAX*NMAX)` [out] ASAV ` ASAV is REAL array, dimension (NMAX*NMAX)` [out] B ` B is REAL array, dimension (NMAX*NRHS)` [out] BSAV ` BSAV is REAL array, dimension (NMAX*NRHS)` [out] X ` X is REAL array, dimension (NMAX*NRHS)` [out] XACT ` XACT is REAL array, dimension (NMAX*NRHS)` [out] S ` S is REAL array, dimension (2*NMAX)` [out] WORK ``` WORK is REAL array, dimension (NMAX*max(3,NRHS))``` [out] RWORK ` RWORK is REAL array, dimension (2*NRHS+NMAX)` [out] IWORK ` IWORK is INTEGER array, dimension (2*NMAX)` [in] NOUT ``` NOUT is INTEGER The unit number for output.```
Date
April 2012

Definition at line 166 of file sdrvge.f.

166 *
167 * -- LAPACK test routine (version 3.6.0) --
168 * -- LAPACK is a software package provided by Univ. of Tennessee, --
169 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
170 * November 2015
171 *
172 * .. Scalar Arguments ..
173  LOGICAL tsterr
174  INTEGER nmax, nn, nout, nrhs
175  REAL thresh
176 * ..
177 * .. Array Arguments ..
178  LOGICAL dotype( * )
179  INTEGER iwork( * ), nval( * )
180  REAL a( * ), afac( * ), asav( * ), b( * ),
181  \$ bsav( * ), rwork( * ), s( * ), work( * ),
182  \$ x( * ), xact( * )
183 * ..
184 *
185 * =====================================================================
186 *
187 * .. Parameters ..
188  REAL one, zero
189  parameter ( one = 1.0e+0, zero = 0.0e+0 )
190  INTEGER ntypes
191  parameter ( ntypes = 11 )
192  INTEGER ntests
193  parameter ( ntests = 7 )
194  INTEGER ntran
195  parameter ( ntran = 3 )
196 * ..
197 * .. Local Scalars ..
198  LOGICAL equil, nofact, prefac, trfcon, zerot
199  CHARACTER dist, equed, fact, trans, TYPE, xtype
200  CHARACTER*3 path
201  INTEGER i, iequed, ifact, imat, in, info, ioff, itran,
202  \$ izero, k, k1, kl, ku, lda, lwork, mode, n, nb,
203  \$ nbmin, nerrs, nfact, nfail, nimat, nrun, nt
204  REAL ainvnm, amax, anorm, anormi, anormo, cndnum,
205  \$ colcnd, rcond, rcondc, rcondi, rcondo, roldc,
206  \$ roldi, roldo, rowcnd, rpvgrw
207 * ..
208 * .. Local Arrays ..
209  CHARACTER equeds( 4 ), facts( 3 ), transs( ntran )
210  INTEGER iseed( 4 ), iseedy( 4 )
211  REAL result( ntests )
212 * ..
213 * .. External Functions ..
214  LOGICAL lsame
215  REAL sget06, slamch, slange, slantr
216  EXTERNAL lsame, sget06, slamch, slange, slantr
217 * ..
218 * .. External Subroutines ..
219  EXTERNAL aladhd, alaerh, alasvm, serrvx, sgeequ, sgesv,
222  \$ slatms, xlaenv
223 * ..
224 * .. Intrinsic Functions ..
225  INTRINSIC abs, max
226 * ..
227 * .. Scalars in Common ..
228  LOGICAL lerr, ok
229  CHARACTER*32 srnamt
230  INTEGER infot, nunit
231 * ..
232 * .. Common blocks ..
233  COMMON / infoc / infot, nunit, ok, lerr
234  COMMON / srnamc / srnamt
235 * ..
236 * .. Data statements ..
237  DATA iseedy / 1988, 1989, 1990, 1991 /
238  DATA transs / 'N', 'T', 'C' /
239  DATA facts / 'F', 'N', 'E' /
240  DATA equeds / 'N', 'R', 'C', 'B' /
241 * ..
242 * .. Executable Statements ..
243 *
244 * Initialize constants and the random number seed.
245 *
246  path( 1: 1 ) = 'Single precision'
247  path( 2: 3 ) = 'GE'
248  nrun = 0
249  nfail = 0
250  nerrs = 0
251  DO 10 i = 1, 4
252  iseed( i ) = iseedy( i )
253  10 CONTINUE
254 *
255 * Test the error exits
256 *
257  IF( tsterr )
258  \$ CALL serrvx( path, nout )
259  infot = 0
260 *
261 * Set the block size and minimum block size for testing.
262 *
263  nb = 1
264  nbmin = 2
265  CALL xlaenv( 1, nb )
266  CALL xlaenv( 2, nbmin )
267 *
268 * Do for each value of N in NVAL
269 *
270  DO 90 in = 1, nn
271  n = nval( in )
272  lda = max( n, 1 )
273  xtype = 'N'
274  nimat = ntypes
275  IF( n.LE.0 )
276  \$ nimat = 1
277 *
278  DO 80 imat = 1, nimat
279 *
280 * Do the tests only if DOTYPE( IMAT ) is true.
281 *
282  IF( .NOT.dotype( imat ) )
283  \$ GO TO 80
284 *
285 * Skip types 5, 6, or 7 if the matrix size is too small.
286 *
287  zerot = imat.GE.5 .AND. imat.LE.7
288  IF( zerot .AND. n.LT.imat-4 )
289  \$ GO TO 80
290 *
291 * Set up parameters with SLATB4 and generate a test matrix
292 * with SLATMS.
293 *
294  CALL slatb4( path, imat, n, n, TYPE, kl, ku, anorm, mode,
295  \$ cndnum, dist )
296  rcondc = one / cndnum
297 *
298  srnamt = 'SLATMS'
299  CALL slatms( n, n, dist, iseed, TYPE, rwork, mode, cndnum,
300  \$ anorm, kl, ku, 'No packing', a, lda, work,
301  \$ info )
302 *
303 * Check error code from SLATMS.
304 *
305  IF( info.NE.0 ) THEN
306  CALL alaerh( path, 'SLATMS', info, 0, ' ', n, n, -1, -1,
307  \$ -1, imat, nfail, nerrs, nout )
308  GO TO 80
309  END IF
310 *
311 * For types 5-7, zero one or more columns of the matrix to
312 * test that INFO is returned correctly.
313 *
314  IF( zerot ) THEN
315  IF( imat.EQ.5 ) THEN
316  izero = 1
317  ELSE IF( imat.EQ.6 ) THEN
318  izero = n
319  ELSE
320  izero = n / 2 + 1
321  END IF
322  ioff = ( izero-1 )*lda
323  IF( imat.LT.7 ) THEN
324  DO 20 i = 1, n
325  a( ioff+i ) = zero
326  20 CONTINUE
327  ELSE
328  CALL slaset( 'Full', n, n-izero+1, zero, zero,
329  \$ a( ioff+1 ), lda )
330  END IF
331  ELSE
332  izero = 0
333  END IF
334 *
335 * Save a copy of the matrix A in ASAV.
336 *
337  CALL slacpy( 'Full', n, n, a, lda, asav, lda )
338 *
339  DO 70 iequed = 1, 4
340  equed = equeds( iequed )
341  IF( iequed.EQ.1 ) THEN
342  nfact = 3
343  ELSE
344  nfact = 1
345  END IF
346 *
347  DO 60 ifact = 1, nfact
348  fact = facts( ifact )
349  prefac = lsame( fact, 'F' )
350  nofact = lsame( fact, 'N' )
351  equil = lsame( fact, 'E' )
352 *
353  IF( zerot ) THEN
354  IF( prefac )
355  \$ GO TO 60
356  rcondo = zero
357  rcondi = zero
358 *
359  ELSE IF( .NOT.nofact ) THEN
360 *
361 * Compute the condition number for comparison with
362 * the value returned by SGESVX (FACT = 'N' reuses
363 * the condition number from the previous iteration
364 * with FACT = 'F').
365 *
366  CALL slacpy( 'Full', n, n, asav, lda, afac, lda )
367  IF( equil .OR. iequed.GT.1 ) THEN
368 *
369 * Compute row and column scale factors to
370 * equilibrate the matrix A.
371 *
372  CALL sgeequ( n, n, afac, lda, s, s( n+1 ),
373  \$ rowcnd, colcnd, amax, info )
374  IF( info.EQ.0 .AND. n.GT.0 ) THEN
375  IF( lsame( equed, 'R' ) ) THEN
376  rowcnd = zero
377  colcnd = one
378  ELSE IF( lsame( equed, 'C' ) ) THEN
379  rowcnd = one
380  colcnd = zero
381  ELSE IF( lsame( equed, 'B' ) ) THEN
382  rowcnd = zero
383  colcnd = zero
384  END IF
385 *
386 * Equilibrate the matrix.
387 *
388  CALL slaqge( n, n, afac, lda, s, s( n+1 ),
389  \$ rowcnd, colcnd, amax, equed )
390  END IF
391  END IF
392 *
393 * Save the condition number of the non-equilibrated
394 * system for use in SGET04.
395 *
396  IF( equil ) THEN
397  roldo = rcondo
398  roldi = rcondi
399  END IF
400 *
401 * Compute the 1-norm and infinity-norm of A.
402 *
403  anormo = slange( '1', n, n, afac, lda, rwork )
404  anormi = slange( 'I', n, n, afac, lda, rwork )
405 *
406 * Factor the matrix A.
407 *
408  srnamt = 'SGETRF'
409  CALL sgetrf( n, n, afac, lda, iwork, info )
410 *
411 * Form the inverse of A.
412 *
413  CALL slacpy( 'Full', n, n, afac, lda, a, lda )
414  lwork = nmax*max( 3, nrhs )
415  srnamt = 'SGETRI'
416  CALL sgetri( n, a, lda, iwork, work, lwork, info )
417 *
418 * Compute the 1-norm condition number of A.
419 *
420  ainvnm = slange( '1', n, n, a, lda, rwork )
421  IF( anormo.LE.zero .OR. ainvnm.LE.zero ) THEN
422  rcondo = one
423  ELSE
424  rcondo = ( one / anormo ) / ainvnm
425  END IF
426 *
427 * Compute the infinity-norm condition number of A.
428 *
429  ainvnm = slange( 'I', n, n, a, lda, rwork )
430  IF( anormi.LE.zero .OR. ainvnm.LE.zero ) THEN
431  rcondi = one
432  ELSE
433  rcondi = ( one / anormi ) / ainvnm
434  END IF
435  END IF
436 *
437  DO 50 itran = 1, ntran
438 *
439 * Do for each value of TRANS.
440 *
441  trans = transs( itran )
442  IF( itran.EQ.1 ) THEN
443  rcondc = rcondo
444  ELSE
445  rcondc = rcondi
446  END IF
447 *
448 * Restore the matrix A.
449 *
450  CALL slacpy( 'Full', n, n, asav, lda, a, lda )
451 *
452 * Form an exact solution and set the right hand side.
453 *
454  srnamt = 'SLARHS'
455  CALL slarhs( path, xtype, 'Full', trans, n, n, kl,
456  \$ ku, nrhs, a, lda, xact, lda, b, lda,
457  \$ iseed, info )
458  xtype = 'C'
459  CALL slacpy( 'Full', n, nrhs, b, lda, bsav, lda )
460 *
461  IF( nofact .AND. itran.EQ.1 ) THEN
462 *
463 * --- Test SGESV ---
464 *
465 * Compute the LU factorization of the matrix and
466 * solve the system.
467 *
468  CALL slacpy( 'Full', n, n, a, lda, afac, lda )
469  CALL slacpy( 'Full', n, nrhs, b, lda, x, lda )
470 *
471  srnamt = 'SGESV '
472  CALL sgesv( n, nrhs, afac, lda, iwork, x, lda,
473  \$ info )
474 *
475 * Check error code from SGESV .
476 *
477  IF( info.NE.izero )
478  \$ CALL alaerh( path, 'SGESV ', info, izero,
479  \$ ' ', n, n, -1, -1, nrhs, imat,
480  \$ nfail, nerrs, nout )
481 *
482 * Reconstruct matrix from factors and compute
483 * residual.
484 *
485  CALL sget01( n, n, a, lda, afac, lda, iwork,
486  \$ rwork, result( 1 ) )
487  nt = 1
488  IF( izero.EQ.0 ) THEN
489 *
490 * Compute residual of the computed solution.
491 *
492  CALL slacpy( 'Full', n, nrhs, b, lda, work,
493  \$ lda )
494  CALL sget02( 'No transpose', n, n, nrhs, a,
495  \$ lda, x, lda, work, lda, rwork,
496  \$ result( 2 ) )
497 *
498 * Check solution from generated exact solution.
499 *
500  CALL sget04( n, nrhs, x, lda, xact, lda,
501  \$ rcondc, result( 3 ) )
502  nt = 3
503  END IF
504 *
505 * Print information about the tests that did not
506 * pass the threshold.
507 *
508  DO 30 k = 1, nt
509  IF( result( k ).GE.thresh ) THEN
510  IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
511  \$ CALL aladhd( nout, path )
512  WRITE( nout, fmt = 9999 )'SGESV ', n,
513  \$ imat, k, result( k )
514  nfail = nfail + 1
515  END IF
516  30 CONTINUE
517  nrun = nrun + nt
518  END IF
519 *
520 * --- Test SGESVX ---
521 *
522  IF( .NOT.prefac )
523  \$ CALL slaset( 'Full', n, n, zero, zero, afac,
524  \$ lda )
525  CALL slaset( 'Full', n, nrhs, zero, zero, x, lda )
526  IF( iequed.GT.1 .AND. n.GT.0 ) THEN
527 *
528 * Equilibrate the matrix if FACT = 'F' and
529 * EQUED = 'R', 'C', or 'B'.
530 *
531  CALL slaqge( n, n, a, lda, s, s( n+1 ), rowcnd,
532  \$ colcnd, amax, equed )
533  END IF
534 *
535 * Solve the system and compute the condition number
536 * and error bounds using SGESVX.
537 *
538  srnamt = 'SGESVX'
539  CALL sgesvx( fact, trans, n, nrhs, a, lda, afac,
540  \$ lda, iwork, equed, s, s( n+1 ), b,
541  \$ lda, x, lda, rcond, rwork,
542  \$ rwork( nrhs+1 ), work, iwork( n+1 ),
543  \$ info )
544 *
545 * Check the error code from SGESVX.
546 *
547  IF( info.NE.izero )
548  \$ CALL alaerh( path, 'SGESVX', info, izero,
549  \$ fact // trans, n, n, -1, -1, nrhs,
550  \$ imat, nfail, nerrs, nout )
551 *
552 * Compare WORK(1) from SGESVX with the computed
553 * reciprocal pivot growth factor RPVGRW
554 *
555  IF( info.NE.0 .AND. info.LE.n) THEN
556  rpvgrw = slantr( 'M', 'U', 'N', info, info,
557  \$ afac, lda, work )
558  IF( rpvgrw.EQ.zero ) THEN
559  rpvgrw = one
560  ELSE
561  rpvgrw = slange( 'M', n, info, a, lda,
562  \$ work ) / rpvgrw
563  END IF
564  ELSE
565  rpvgrw = slantr( 'M', 'U', 'N', n, n, afac, lda,
566  \$ work )
567  IF( rpvgrw.EQ.zero ) THEN
568  rpvgrw = one
569  ELSE
570  rpvgrw = slange( 'M', n, n, a, lda, work ) /
571  \$ rpvgrw
572  END IF
573  END IF
574  result( 7 ) = abs( rpvgrw-work( 1 ) ) /
575  \$ max( work( 1 ), rpvgrw ) /
576  \$ slamch( 'E' )
577 *
578  IF( .NOT.prefac ) THEN
579 *
580 * Reconstruct matrix from factors and compute
581 * residual.
582 *
583  CALL sget01( n, n, a, lda, afac, lda, iwork,
584  \$ rwork( 2*nrhs+1 ), result( 1 ) )
585  k1 = 1
586  ELSE
587  k1 = 2
588  END IF
589 *
590  IF( info.EQ.0 ) THEN
591  trfcon = .false.
592 *
593 * Compute residual of the computed solution.
594 *
595  CALL slacpy( 'Full', n, nrhs, bsav, lda, work,
596  \$ lda )
597  CALL sget02( trans, n, n, nrhs, asav, lda, x,
598  \$ lda, work, lda, rwork( 2*nrhs+1 ),
599  \$ result( 2 ) )
600 *
601 * Check solution from generated exact solution.
602 *
603  IF( nofact .OR. ( prefac .AND. lsame( equed,
604  \$ 'N' ) ) ) THEN
605  CALL sget04( n, nrhs, x, lda, xact, lda,
606  \$ rcondc, result( 3 ) )
607  ELSE
608  IF( itran.EQ.1 ) THEN
609  roldc = roldo
610  ELSE
611  roldc = roldi
612  END IF
613  CALL sget04( n, nrhs, x, lda, xact, lda,
614  \$ roldc, result( 3 ) )
615  END IF
616 *
617 * Check the error bounds from iterative
618 * refinement.
619 *
620  CALL sget07( trans, n, nrhs, asav, lda, b, lda,
621  \$ x, lda, xact, lda, rwork, .true.,
622  \$ rwork( nrhs+1 ), result( 4 ) )
623  ELSE
624  trfcon = .true.
625  END IF
626 *
627 * Compare RCOND from SGESVX with the computed value
628 * in RCONDC.
629 *
630  result( 6 ) = sget06( rcond, rcondc )
631 *
632 * Print information about the tests that did not pass
633 * the threshold.
634 *
635  IF( .NOT.trfcon ) THEN
636  DO 40 k = k1, ntests
637  IF( result( k ).GE.thresh ) THEN
638  IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
639  \$ CALL aladhd( nout, path )
640  IF( prefac ) THEN
641  WRITE( nout, fmt = 9997 )'SGESVX',
642  \$ fact, trans, n, equed, imat, k,
643  \$ result( k )
644  ELSE
645  WRITE( nout, fmt = 9998 )'SGESVX',
646  \$ fact, trans, n, imat, k, result( k )
647  END IF
648  nfail = nfail + 1
649  END IF
650  40 CONTINUE
651  nrun = nrun + ntests - k1 + 1
652  ELSE
653  IF( result( 1 ).GE.thresh .AND. .NOT.prefac )
654  \$ THEN
655  IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
656  \$ CALL aladhd( nout, path )
657  IF( prefac ) THEN
658  WRITE( nout, fmt = 9997 )'SGESVX', fact,
659  \$ trans, n, equed, imat, 1, result( 1 )
660  ELSE
661  WRITE( nout, fmt = 9998 )'SGESVX', fact,
662  \$ trans, n, imat, 1, result( 1 )
663  END IF
664  nfail = nfail + 1
665  nrun = nrun + 1
666  END IF
667  IF( result( 6 ).GE.thresh ) THEN
668  IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
669  \$ CALL aladhd( nout, path )
670  IF( prefac ) THEN
671  WRITE( nout, fmt = 9997 )'SGESVX', fact,
672  \$ trans, n, equed, imat, 6, result( 6 )
673  ELSE
674  WRITE( nout, fmt = 9998 )'SGESVX', fact,
675  \$ trans, n, imat, 6, result( 6 )
676  END IF
677  nfail = nfail + 1
678  nrun = nrun + 1
679  END IF
680  IF( result( 7 ).GE.thresh ) THEN
681  IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
682  \$ CALL aladhd( nout, path )
683  IF( prefac ) THEN
684  WRITE( nout, fmt = 9997 )'SGESVX', fact,
685  \$ trans, n, equed, imat, 7, result( 7 )
686  ELSE
687  WRITE( nout, fmt = 9998 )'SGESVX', fact,
688  \$ trans, n, imat, 7, result( 7 )
689  END IF
690  nfail = nfail + 1
691  nrun = nrun + 1
692  END IF
693 *
694  END IF
695 *
696  50 CONTINUE
697  60 CONTINUE
698  70 CONTINUE
699  80 CONTINUE
700  90 CONTINUE
701 *
702 * Print a summary of the results.
703 *
704  CALL alasvm( path, nout, nfail, nrun, nerrs )
705 *
706  9999 FORMAT( 1x, a, ', N =', i5, ', type ', i2, ', test(', i2, ') =',
707  \$ g12.5 )
708  9998 FORMAT( 1x, a, ', FACT=''', a1, ''', TRANS=''', a1, ''', N=', i5,
709  \$ ', type ', i2, ', test(', i1, ')=', g12.5 )
710  9997 FORMAT( 1x, a, ', FACT=''', a1, ''', TRANS=''', a1, ''', N=', i5,
711  \$ ', EQUED=''', a1, ''', type ', i2, ', test(', i1, ')=',
712  \$ g12.5 )
713  RETURN
714 *
715 * End of SDRVGE
716 *
subroutine slaqge(M, N, A, LDA, R, C, ROWCND, COLCND, AMAX, EQUED)
SLAQGE scales a general rectangular matrix, using row and column scaling factors computed by sgeequ...
Definition: slaqge.f:144
subroutine alasvm(TYPE, NOUT, NFAIL, NRUN, NERRS)
ALASVM
Definition: alasvm.f:75
subroutine alaerh(PATH, SUBNAM, INFO, INFOE, OPTS, M, N, KL, KU, N5, IMAT, NFAIL, NERRS, NOUT)
ALAERH
Definition: alaerh.f:149
subroutine sget07(TRANS, N, NRHS, A, LDA, B, LDB, X, LDX, XACT, LDXACT, FERR, CHKFERR, BERR, RESLTS)
SGET07
Definition: sget07.f:167
subroutine sget02(TRANS, M, N, NRHS, A, LDA, X, LDX, B, LDB, RWORK, RESID)
SGET02
Definition: sget02.f:135
subroutine sgesv(N, NRHS, A, LDA, IPIV, B, LDB, INFO)
SGESV computes the solution to system of linear equations A * X = B for GE matrices (simple driver) ...
Definition: sgesv.f:124
subroutine slatb4(PATH, IMAT, M, N, TYPE, KL, KU, ANORM, MODE, CNDNUM, DIST)
SLATB4
Definition: slatb4.f:122
subroutine slarhs(PATH, XTYPE, UPLO, TRANS, M, N, KL, KU, NRHS, A, LDA, X, LDX, B, LDB, ISEED, INFO)
SLARHS
Definition: slarhs.f:206
real function sget06(RCOND, RCONDC)
SGET06
Definition: sget06.f:57
subroutine xlaenv(ISPEC, NVALUE)
XLAENV
Definition: xlaenv.f:83
subroutine slacpy(UPLO, M, N, A, LDA, B, LDB)
SLACPY copies all or part of one two-dimensional array to another.
Definition: slacpy.f:105
subroutine sgesvx(FACT, TRANS, N, NRHS, A, LDA, AF, LDAF, IPIV, EQUED, R, C, B, LDB, X, LDX, RCOND, FERR, BERR, WORK, IWORK, INFO)
SGESVX computes the solution to system of linear equations A * X = B for GE matrices ...
Definition: sgesvx.f:351
subroutine slatms(M, N, DIST, ISEED, SYM, D, MODE, COND, DMAX, KL, KU, PACK, A, LDA, WORK, INFO)
SLATMS
Definition: slatms.f:323
subroutine slaset(UPLO, M, N, ALPHA, BETA, A, LDA)
SLASET initializes the off-diagonal elements and the diagonal elements of a matrix to given values...
Definition: slaset.f:112
subroutine sgetrf(M, N, A, LDA, IPIV, INFO)
SGETRF
Definition: sgetrf.f:110
real function slange(NORM, M, N, A, LDA, WORK)
SLANGE returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value ...
Definition: slange.f:116
subroutine sget04(N, NRHS, X, LDX, XACT, LDXACT, RCOND, RESID)
SGET04
Definition: sget04.f:104
subroutine sget01(M, N, A, LDA, AFAC, LDAFAC, IPIV, RWORK, RESID)
SGET01
Definition: sget01.f:109
real function slantr(NORM, UPLO, DIAG, M, N, A, LDA, WORK)
SLANTR returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a trapezoidal or triangular matrix.
Definition: slantr.f:143
subroutine serrvx(PATH, NUNIT)
SERRVX
Definition: serrvx.f:57
subroutine sgeequ(M, N, A, LDA, R, C, ROWCND, COLCND, AMAX, INFO)
SGEEQU
Definition: sgeequ.f:141
real function slamch(CMACH)
SLAMCH
Definition: slamch.f:69
subroutine sgetri(N, A, LDA, IPIV, WORK, LWORK, INFO)
SGETRI
Definition: sgetri.f:116
logical function lsame(CA, CB)
LSAME
Definition: lsame.f:55

Here is the call graph for this function:

Here is the caller graph for this function: