LAPACK  3.6.1 LAPACK: Linear Algebra PACKage
 subroutine zgbt05 ( character TRANS, integer N, integer KL, integer KU, integer NRHS, complex*16, dimension( ldab, * ) AB, integer LDAB, complex*16, dimension( ldb, * ) B, integer LDB, complex*16, dimension( ldx, * ) X, integer LDX, complex*16, dimension( ldxact, * ) XACT, integer LDXACT, double precision, dimension( * ) FERR, double precision, dimension( * ) BERR, double precision, dimension( * ) RESLTS )

ZGBT05

Purpose:
``` ZGBT05 tests the error bounds from iterative refinement for the
computed solution to a system of equations op(A)*X = B, where A is a
general band matrix of order n with kl subdiagonals and ku
superdiagonals and op(A) = A or A**T, depending on TRANS.

RESLTS(1) = test of the error bound
= norm(X - XACT) / ( norm(X) * FERR )

A large value is returned if this ratio is not less than one.

RESLTS(2) = residual from the iterative refinement routine
= the maximum of BERR / ( NZ*EPS + (*) ), where
(*) = NZ*UNFL / (min_i (abs(op(A))*abs(X) +abs(b))_i )
and NZ = max. number of nonzeros in any row of A, plus 1```
Parameters
 [in] TRANS ``` TRANS is CHARACTER*1 Specifies the form of the system of equations. = 'N': A * X = B (No transpose) = 'T': A**T * X = B (Transpose) = 'C': A**H * X = B (Conjugate transpose = Transpose)``` [in] N ``` N is INTEGER The number of rows of the matrices X, B, and XACT, and the order of the matrix A. N >= 0.``` [in] KL ``` KL is INTEGER The number of subdiagonals within the band of A. KL >= 0.``` [in] KU ``` KU is INTEGER The number of superdiagonals within the band of A. KU >= 0.``` [in] NRHS ``` NRHS is INTEGER The number of columns of the matrices X, B, and XACT. NRHS >= 0.``` [in] AB ``` AB is COMPLEX*16 array, dimension (LDAB,N) The original band matrix A, stored in rows 1 to KL+KU+1. The j-th column of A is stored in the j-th column of the array AB as follows: AB(ku+1+i-j,j) = A(i,j) for max(1,j-ku)<=i<=min(n,j+kl).``` [in] LDAB ``` LDAB is INTEGER The leading dimension of the array AB. LDAB >= KL+KU+1.``` [in] B ``` B is COMPLEX*16 array, dimension (LDB,NRHS) The right hand side vectors for the system of linear equations.``` [in] LDB ``` LDB is INTEGER The leading dimension of the array B. LDB >= max(1,N).``` [in] X ``` X is COMPLEX*16 array, dimension (LDX,NRHS) The computed solution vectors. Each vector is stored as a column of the matrix X.``` [in] LDX ``` LDX is INTEGER The leading dimension of the array X. LDX >= max(1,N).``` [in] XACT ``` XACT is COMPLEX*16 array, dimension (LDX,NRHS) The exact solution vectors. Each vector is stored as a column of the matrix XACT.``` [in] LDXACT ``` LDXACT is INTEGER The leading dimension of the array XACT. LDXACT >= max(1,N).``` [in] FERR ``` FERR is DOUBLE PRECISION array, dimension (NRHS) The estimated forward error bounds for each solution vector X. If XTRUE is the true solution, FERR bounds the magnitude of the largest entry in (X - XTRUE) divided by the magnitude of the largest entry in X.``` [in] BERR ``` BERR is DOUBLE PRECISION array, dimension (NRHS) The componentwise relative backward error of each solution vector (i.e., the smallest relative change in any entry of A or B that makes X an exact solution).``` [out] RESLTS ``` RESLTS is DOUBLE PRECISION array, dimension (2) The maximum over the NRHS solution vectors of the ratios: RESLTS(1) = norm(X - XACT) / ( norm(X) * FERR ) RESLTS(2) = BERR / ( NZ*EPS + (*) )```
Date
November 2011

Definition at line 178 of file zgbt05.f.

178 *
179 * -- LAPACK test routine (version 3.4.0) --
180 * -- LAPACK is a software package provided by Univ. of Tennessee, --
181 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
182 * November 2011
183 *
184 * .. Scalar Arguments ..
185  CHARACTER trans
186  INTEGER kl, ku, ldab, ldb, ldx, ldxact, n, nrhs
187 * ..
188 * .. Array Arguments ..
189  DOUBLE PRECISION berr( * ), ferr( * ), reslts( * )
190  COMPLEX*16 ab( ldab, * ), b( ldb, * ), x( ldx, * ),
191  \$ xact( ldxact, * )
192 * ..
193 *
194 * =====================================================================
195 *
196 * .. Parameters ..
197  DOUBLE PRECISION zero, one
198  parameter ( zero = 0.0d+0, one = 1.0d+0 )
199 * ..
200 * .. Local Scalars ..
201  LOGICAL notran
202  INTEGER i, imax, j, k, nz
203  DOUBLE PRECISION axbi, diff, eps, errbnd, ovfl, tmp, unfl, xnorm
204  COMPLEX*16 zdum
205 * ..
206 * .. External Functions ..
207  LOGICAL lsame
208  INTEGER izamax
209  DOUBLE PRECISION dlamch
210  EXTERNAL lsame, izamax, dlamch
211 * ..
212 * .. Intrinsic Functions ..
213  INTRINSIC abs, dble, dimag, max, min
214 * ..
215 * .. Statement Functions ..
216  DOUBLE PRECISION cabs1
217 * ..
218 * .. Statement Function definitions ..
219  cabs1( zdum ) = abs( dble( zdum ) ) + abs( dimag( zdum ) )
220 * ..
221 * .. Executable Statements ..
222 *
223 * Quick exit if N = 0 or NRHS = 0.
224 *
225  IF( n.LE.0 .OR. nrhs.LE.0 ) THEN
226  reslts( 1 ) = zero
227  reslts( 2 ) = zero
228  RETURN
229  END IF
230 *
231  eps = dlamch( 'Epsilon' )
232  unfl = dlamch( 'Safe minimum' )
233  ovfl = one / unfl
234  notran = lsame( trans, 'N' )
235  nz = min( kl+ku+2, n+1 )
236 *
237 * Test 1: Compute the maximum of
238 * norm(X - XACT) / ( norm(X) * FERR )
239 * over all the vectors X and XACT using the infinity-norm.
240 *
241  errbnd = zero
242  DO 30 j = 1, nrhs
243  imax = izamax( n, x( 1, j ), 1 )
244  xnorm = max( cabs1( x( imax, j ) ), unfl )
245  diff = zero
246  DO 10 i = 1, n
247  diff = max( diff, cabs1( x( i, j )-xact( i, j ) ) )
248  10 CONTINUE
249 *
250  IF( xnorm.GT.one ) THEN
251  GO TO 20
252  ELSE IF( diff.LE.ovfl*xnorm ) THEN
253  GO TO 20
254  ELSE
255  errbnd = one / eps
256  GO TO 30
257  END IF
258 *
259  20 CONTINUE
260  IF( diff / xnorm.LE.ferr( j ) ) THEN
261  errbnd = max( errbnd, ( diff / xnorm ) / ferr( j ) )
262  ELSE
263  errbnd = one / eps
264  END IF
265  30 CONTINUE
266  reslts( 1 ) = errbnd
267 *
268 * Test 2: Compute the maximum of BERR / ( NZ*EPS + (*) ), where
269 * (*) = NZ*UNFL / (min_i (abs(op(A))*abs(X) +abs(b))_i )
270 *
271  DO 70 k = 1, nrhs
272  DO 60 i = 1, n
273  tmp = cabs1( b( i, k ) )
274  IF( notran ) THEN
275  DO 40 j = max( i-kl, 1 ), min( i+ku, n )
276  tmp = tmp + cabs1( ab( ku+1+i-j, j ) )*
277  \$ cabs1( x( j, k ) )
278  40 CONTINUE
279  ELSE
280  DO 50 j = max( i-ku, 1 ), min( i+kl, n )
281  tmp = tmp + cabs1( ab( ku+1+j-i, i ) )*
282  \$ cabs1( x( j, k ) )
283  50 CONTINUE
284  END IF
285  IF( i.EQ.1 ) THEN
286  axbi = tmp
287  ELSE
288  axbi = min( axbi, tmp )
289  END IF
290  60 CONTINUE
291  tmp = berr( k ) / ( nz*eps+nz*unfl / max( axbi, nz*unfl ) )
292  IF( k.EQ.1 ) THEN
293  reslts( 2 ) = tmp
294  ELSE
295  reslts( 2 ) = max( reslts( 2 ), tmp )
296  END IF
297  70 CONTINUE
298 *
299  RETURN
300 *
301 * End of ZGBT05
302 *
double precision function dlamch(CMACH)
DLAMCH
Definition: dlamch.f:65
integer function izamax(N, ZX, INCX)
IZAMAX
Definition: izamax.f:53
logical function lsame(CA, CB)
LSAME
Definition: lsame.f:55

Here is the caller graph for this function: