 LAPACK  3.6.1 LAPACK: Linear Algebra PACKage
 subroutine zgbsvx ( character FACT, character TRANS, integer N, integer KL, integer KU, integer NRHS, complex*16, dimension( ldab, * ) AB, integer LDAB, complex*16, dimension( ldafb, * ) AFB, integer LDAFB, integer, dimension( * ) IPIV, character EQUED, double precision, dimension( * ) R, double precision, dimension( * ) C, complex*16, dimension( ldb, * ) B, integer LDB, complex*16, dimension( ldx, * ) X, integer LDX, double precision RCOND, double precision, dimension( * ) FERR, double precision, dimension( * ) BERR, complex*16, dimension( * ) WORK, double precision, dimension( * ) RWORK, integer INFO )

ZGBSVX computes the solution to system of linear equations A * X = B for GB matrices

Purpose:
``` ZGBSVX uses the LU factorization to compute the solution to a complex
system of linear equations A * X = B, A**T * X = B, or A**H * X = B,
where A is a band matrix of order N with KL subdiagonals and KU
superdiagonals, and X and B are N-by-NRHS matrices.

Error bounds on the solution and a condition estimate are also
provided.```
Description:
``` The following steps are performed by this subroutine:

1. If FACT = 'E', real scaling factors are computed to equilibrate
the system:
TRANS = 'N':  diag(R)*A*diag(C)     *inv(diag(C))*X = diag(R)*B
TRANS = 'T': (diag(R)*A*diag(C))**T *inv(diag(R))*X = diag(C)*B
TRANS = 'C': (diag(R)*A*diag(C))**H *inv(diag(R))*X = diag(C)*B
Whether or not the system will be equilibrated depends on the
scaling of the matrix A, but if equilibration is used, A is
overwritten by diag(R)*A*diag(C) and B by diag(R)*B (if TRANS='N')
or diag(C)*B (if TRANS = 'T' or 'C').

2. If FACT = 'N' or 'E', the LU decomposition is used to factor the
matrix A (after equilibration if FACT = 'E') as
A = L * U,
where L is a product of permutation and unit lower triangular
matrices with KL subdiagonals, and U is upper triangular with
KL+KU superdiagonals.

3. If some U(i,i)=0, so that U is exactly singular, then the routine
returns with INFO = i. Otherwise, the factored form of A is used
to estimate the condition number of the matrix A.  If the
reciprocal of the condition number is less than machine precision,
INFO = N+1 is returned as a warning, but the routine still goes on
to solve for X and compute error bounds as described below.

4. The system of equations is solved for X using the factored form
of A.

5. Iterative refinement is applied to improve the computed solution
matrix and calculate error bounds and backward error estimates
for it.

6. If equilibration was used, the matrix X is premultiplied by
diag(C) (if TRANS = 'N') or diag(R) (if TRANS = 'T' or 'C') so
that it solves the original system before equilibration.```
Parameters
 [in] FACT ``` FACT is CHARACTER*1 Specifies whether or not the factored form of the matrix A is supplied on entry, and if not, whether the matrix A should be equilibrated before it is factored. = 'F': On entry, AFB and IPIV contain the factored form of A. If EQUED is not 'N', the matrix A has been equilibrated with scaling factors given by R and C. AB, AFB, and IPIV are not modified. = 'N': The matrix A will be copied to AFB and factored. = 'E': The matrix A will be equilibrated if necessary, then copied to AFB and factored.``` [in] TRANS ``` TRANS is CHARACTER*1 Specifies the form of the system of equations. = 'N': A * X = B (No transpose) = 'T': A**T * X = B (Transpose) = 'C': A**H * X = B (Conjugate transpose)``` [in] N ``` N is INTEGER The number of linear equations, i.e., the order of the matrix A. N >= 0.``` [in] KL ``` KL is INTEGER The number of subdiagonals within the band of A. KL >= 0.``` [in] KU ``` KU is INTEGER The number of superdiagonals within the band of A. KU >= 0.``` [in] NRHS ``` NRHS is INTEGER The number of right hand sides, i.e., the number of columns of the matrices B and X. NRHS >= 0.``` [in,out] AB ``` AB is COMPLEX*16 array, dimension (LDAB,N) On entry, the matrix A in band storage, in rows 1 to KL+KU+1. The j-th column of A is stored in the j-th column of the array AB as follows: AB(KU+1+i-j,j) = A(i,j) for max(1,j-KU)<=i<=min(N,j+kl) If FACT = 'F' and EQUED is not 'N', then A must have been equilibrated by the scaling factors in R and/or C. AB is not modified if FACT = 'F' or 'N', or if FACT = 'E' and EQUED = 'N' on exit. On exit, if EQUED .ne. 'N', A is scaled as follows: EQUED = 'R': A := diag(R) * A EQUED = 'C': A := A * diag(C) EQUED = 'B': A := diag(R) * A * diag(C).``` [in] LDAB ``` LDAB is INTEGER The leading dimension of the array AB. LDAB >= KL+KU+1.``` [in,out] AFB ``` AFB is COMPLEX*16 array, dimension (LDAFB,N) If FACT = 'F', then AFB is an input argument and on entry contains details of the LU factorization of the band matrix A, as computed by ZGBTRF. U is stored as an upper triangular band matrix with KL+KU superdiagonals in rows 1 to KL+KU+1, and the multipliers used during the factorization are stored in rows KL+KU+2 to 2*KL+KU+1. If EQUED .ne. 'N', then AFB is the factored form of the equilibrated matrix A. If FACT = 'N', then AFB is an output argument and on exit returns details of the LU factorization of A. If FACT = 'E', then AFB is an output argument and on exit returns details of the LU factorization of the equilibrated matrix A (see the description of AB for the form of the equilibrated matrix).``` [in] LDAFB ``` LDAFB is INTEGER The leading dimension of the array AFB. LDAFB >= 2*KL+KU+1.``` [in,out] IPIV ``` IPIV is INTEGER array, dimension (N) If FACT = 'F', then IPIV is an input argument and on entry contains the pivot indices from the factorization A = L*U as computed by ZGBTRF; row i of the matrix was interchanged with row IPIV(i). If FACT = 'N', then IPIV is an output argument and on exit contains the pivot indices from the factorization A = L*U of the original matrix A. If FACT = 'E', then IPIV is an output argument and on exit contains the pivot indices from the factorization A = L*U of the equilibrated matrix A.``` [in,out] EQUED ``` EQUED is CHARACTER*1 Specifies the form of equilibration that was done. = 'N': No equilibration (always true if FACT = 'N'). = 'R': Row equilibration, i.e., A has been premultiplied by diag(R). = 'C': Column equilibration, i.e., A has been postmultiplied by diag(C). = 'B': Both row and column equilibration, i.e., A has been replaced by diag(R) * A * diag(C). EQUED is an input argument if FACT = 'F'; otherwise, it is an output argument.``` [in,out] R ``` R is DOUBLE PRECISION array, dimension (N) The row scale factors for A. If EQUED = 'R' or 'B', A is multiplied on the left by diag(R); if EQUED = 'N' or 'C', R is not accessed. R is an input argument if FACT = 'F'; otherwise, R is an output argument. If FACT = 'F' and EQUED = 'R' or 'B', each element of R must be positive.``` [in,out] C ``` C is DOUBLE PRECISION array, dimension (N) The column scale factors for A. If EQUED = 'C' or 'B', A is multiplied on the right by diag(C); if EQUED = 'N' or 'R', C is not accessed. C is an input argument if FACT = 'F'; otherwise, C is an output argument. If FACT = 'F' and EQUED = 'C' or 'B', each element of C must be positive.``` [in,out] B ``` B is COMPLEX*16 array, dimension (LDB,NRHS) On entry, the right hand side matrix B. On exit, if EQUED = 'N', B is not modified; if TRANS = 'N' and EQUED = 'R' or 'B', B is overwritten by diag(R)*B; if TRANS = 'T' or 'C' and EQUED = 'C' or 'B', B is overwritten by diag(C)*B.``` [in] LDB ``` LDB is INTEGER The leading dimension of the array B. LDB >= max(1,N).``` [out] X ``` X is COMPLEX*16 array, dimension (LDX,NRHS) If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X to the original system of equations. Note that A and B are modified on exit if EQUED .ne. 'N', and the solution to the equilibrated system is inv(diag(C))*X if TRANS = 'N' and EQUED = 'C' or 'B', or inv(diag(R))*X if TRANS = 'T' or 'C' and EQUED = 'R' or 'B'.``` [in] LDX ``` LDX is INTEGER The leading dimension of the array X. LDX >= max(1,N).``` [out] RCOND ``` RCOND is DOUBLE PRECISION The estimate of the reciprocal condition number of the matrix A after equilibration (if done). If RCOND is less than the machine precision (in particular, if RCOND = 0), the matrix is singular to working precision. This condition is indicated by a return code of INFO > 0.``` [out] FERR ``` FERR is DOUBLE PRECISION array, dimension (NRHS) The estimated forward error bound for each solution vector X(j) (the j-th column of the solution matrix X). If XTRUE is the true solution corresponding to X(j), FERR(j) is an estimated upper bound for the magnitude of the largest element in (X(j) - XTRUE) divided by the magnitude of the largest element in X(j). The estimate is as reliable as the estimate for RCOND, and is almost always a slight overestimate of the true error.``` [out] BERR ``` BERR is DOUBLE PRECISION array, dimension (NRHS) The componentwise relative backward error of each solution vector X(j) (i.e., the smallest relative change in any element of A or B that makes X(j) an exact solution).``` [out] WORK ` WORK is COMPLEX*16 array, dimension (2*N)` [out] RWORK ``` RWORK is DOUBLE PRECISION array, dimension (N) On exit, RWORK(1) contains the reciprocal pivot growth factor norm(A)/norm(U). The "max absolute element" norm is used. If RWORK(1) is much less than 1, then the stability of the LU factorization of the (equilibrated) matrix A could be poor. This also means that the solution X, condition estimator RCOND, and forward error bound FERR could be unreliable. If factorization fails with 0 0: if INFO = i, and i is <= N: U(i,i) is exactly zero. The factorization has been completed, but the factor U is exactly singular, so the solution and error bounds could not be computed. RCOND = 0 is returned. = N+1: U is nonsingular, but RCOND is less than machine precision, meaning that the matrix is singular to working precision. Nevertheless, the solution and error bounds are computed because there are a number of situations where the computed solution can be more accurate than the value of RCOND would suggest.```
Date
April 2012

Definition at line 372 of file zgbsvx.f.

372 *
373 * -- LAPACK driver routine (version 3.4.1) --
374 * -- LAPACK is a software package provided by Univ. of Tennessee, --
375 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
376 * April 2012
377 *
378 * .. Scalar Arguments ..
379  CHARACTER equed, fact, trans
380  INTEGER info, kl, ku, ldab, ldafb, ldb, ldx, n, nrhs
381  DOUBLE PRECISION rcond
382 * ..
383 * .. Array Arguments ..
384  INTEGER ipiv( * )
385  DOUBLE PRECISION berr( * ), c( * ), ferr( * ), r( * ),
386  \$ rwork( * )
387  COMPLEX*16 ab( ldab, * ), afb( ldafb, * ), b( ldb, * ),
388  \$ work( * ), x( ldx, * )
389 * ..
390 *
391 * =====================================================================
392 * Moved setting of INFO = N+1 so INFO does not subsequently get
393 * overwritten. Sven, 17 Mar 05.
394 * =====================================================================
395 *
396 * .. Parameters ..
397  DOUBLE PRECISION zero, one
398  parameter ( zero = 0.0d+0, one = 1.0d+0 )
399 * ..
400 * .. Local Scalars ..
401  LOGICAL colequ, equil, nofact, notran, rowequ
402  CHARACTER norm
403  INTEGER i, infequ, j, j1, j2
404  DOUBLE PRECISION amax, anorm, bignum, colcnd, rcmax, rcmin,
405  \$ rowcnd, rpvgrw, smlnum
406 * ..
407 * .. External Functions ..
408  LOGICAL lsame
409  DOUBLE PRECISION dlamch, zlangb, zlantb
410  EXTERNAL lsame, dlamch, zlangb, zlantb
411 * ..
412 * .. External Subroutines ..
413  EXTERNAL xerbla, zcopy, zgbcon, zgbequ, zgbrfs, zgbtrf,
414  \$ zgbtrs, zlacpy, zlaqgb
415 * ..
416 * .. Intrinsic Functions ..
417  INTRINSIC abs, max, min
418 * ..
419 * .. Executable Statements ..
420 *
421  info = 0
422  nofact = lsame( fact, 'N' )
423  equil = lsame( fact, 'E' )
424  notran = lsame( trans, 'N' )
425  IF( nofact .OR. equil ) THEN
426  equed = 'N'
427  rowequ = .false.
428  colequ = .false.
429  ELSE
430  rowequ = lsame( equed, 'R' ) .OR. lsame( equed, 'B' )
431  colequ = lsame( equed, 'C' ) .OR. lsame( equed, 'B' )
432  smlnum = dlamch( 'Safe minimum' )
433  bignum = one / smlnum
434  END IF
435 *
436 * Test the input parameters.
437 *
438  IF( .NOT.nofact .AND. .NOT.equil .AND. .NOT.lsame( fact, 'F' ) )
439  \$ THEN
440  info = -1
441  ELSE IF( .NOT.notran .AND. .NOT.lsame( trans, 'T' ) .AND. .NOT.
442  \$ lsame( trans, 'C' ) ) THEN
443  info = -2
444  ELSE IF( n.LT.0 ) THEN
445  info = -3
446  ELSE IF( kl.LT.0 ) THEN
447  info = -4
448  ELSE IF( ku.LT.0 ) THEN
449  info = -5
450  ELSE IF( nrhs.LT.0 ) THEN
451  info = -6
452  ELSE IF( ldab.LT.kl+ku+1 ) THEN
453  info = -8
454  ELSE IF( ldafb.LT.2*kl+ku+1 ) THEN
455  info = -10
456  ELSE IF( lsame( fact, 'F' ) .AND. .NOT.
457  \$ ( rowequ .OR. colequ .OR. lsame( equed, 'N' ) ) ) THEN
458  info = -12
459  ELSE
460  IF( rowequ ) THEN
461  rcmin = bignum
462  rcmax = zero
463  DO 10 j = 1, n
464  rcmin = min( rcmin, r( j ) )
465  rcmax = max( rcmax, r( j ) )
466  10 CONTINUE
467  IF( rcmin.LE.zero ) THEN
468  info = -13
469  ELSE IF( n.GT.0 ) THEN
470  rowcnd = max( rcmin, smlnum ) / min( rcmax, bignum )
471  ELSE
472  rowcnd = one
473  END IF
474  END IF
475  IF( colequ .AND. info.EQ.0 ) THEN
476  rcmin = bignum
477  rcmax = zero
478  DO 20 j = 1, n
479  rcmin = min( rcmin, c( j ) )
480  rcmax = max( rcmax, c( j ) )
481  20 CONTINUE
482  IF( rcmin.LE.zero ) THEN
483  info = -14
484  ELSE IF( n.GT.0 ) THEN
485  colcnd = max( rcmin, smlnum ) / min( rcmax, bignum )
486  ELSE
487  colcnd = one
488  END IF
489  END IF
490  IF( info.EQ.0 ) THEN
491  IF( ldb.LT.max( 1, n ) ) THEN
492  info = -16
493  ELSE IF( ldx.LT.max( 1, n ) ) THEN
494  info = -18
495  END IF
496  END IF
497  END IF
498 *
499  IF( info.NE.0 ) THEN
500  CALL xerbla( 'ZGBSVX', -info )
501  RETURN
502  END IF
503 *
504  IF( equil ) THEN
505 *
506 * Compute row and column scalings to equilibrate the matrix A.
507 *
508  CALL zgbequ( n, n, kl, ku, ab, ldab, r, c, rowcnd, colcnd,
509  \$ amax, infequ )
510  IF( infequ.EQ.0 ) THEN
511 *
512 * Equilibrate the matrix.
513 *
514  CALL zlaqgb( n, n, kl, ku, ab, ldab, r, c, rowcnd, colcnd,
515  \$ amax, equed )
516  rowequ = lsame( equed, 'R' ) .OR. lsame( equed, 'B' )
517  colequ = lsame( equed, 'C' ) .OR. lsame( equed, 'B' )
518  END IF
519  END IF
520 *
521 * Scale the right hand side.
522 *
523  IF( notran ) THEN
524  IF( rowequ ) THEN
525  DO 40 j = 1, nrhs
526  DO 30 i = 1, n
527  b( i, j ) = r( i )*b( i, j )
528  30 CONTINUE
529  40 CONTINUE
530  END IF
531  ELSE IF( colequ ) THEN
532  DO 60 j = 1, nrhs
533  DO 50 i = 1, n
534  b( i, j ) = c( i )*b( i, j )
535  50 CONTINUE
536  60 CONTINUE
537  END IF
538 *
539  IF( nofact .OR. equil ) THEN
540 *
541 * Compute the LU factorization of the band matrix A.
542 *
543  DO 70 j = 1, n
544  j1 = max( j-ku, 1 )
545  j2 = min( j+kl, n )
546  CALL zcopy( j2-j1+1, ab( ku+1-j+j1, j ), 1,
547  \$ afb( kl+ku+1-j+j1, j ), 1 )
548  70 CONTINUE
549 *
550  CALL zgbtrf( n, n, kl, ku, afb, ldafb, ipiv, info )
551 *
552 * Return if INFO is non-zero.
553 *
554  IF( info.GT.0 ) THEN
555 *
556 * Compute the reciprocal pivot growth factor of the
557 * leading rank-deficient INFO columns of A.
558 *
559  anorm = zero
560  DO 90 j = 1, info
561  DO 80 i = max( ku+2-j, 1 ), min( n+ku+1-j, kl+ku+1 )
562  anorm = max( anorm, abs( ab( i, j ) ) )
563  80 CONTINUE
564  90 CONTINUE
565  rpvgrw = zlantb( 'M', 'U', 'N', info, min( info-1, kl+ku ),
566  \$ afb( max( 1, kl+ku+2-info ), 1 ), ldafb,
567  \$ rwork )
568  IF( rpvgrw.EQ.zero ) THEN
569  rpvgrw = one
570  ELSE
571  rpvgrw = anorm / rpvgrw
572  END IF
573  rwork( 1 ) = rpvgrw
574  rcond = zero
575  RETURN
576  END IF
577  END IF
578 *
579 * Compute the norm of the matrix A and the
580 * reciprocal pivot growth factor RPVGRW.
581 *
582  IF( notran ) THEN
583  norm = '1'
584  ELSE
585  norm = 'I'
586  END IF
587  anorm = zlangb( norm, n, kl, ku, ab, ldab, rwork )
588  rpvgrw = zlantb( 'M', 'U', 'N', n, kl+ku, afb, ldafb, rwork )
589  IF( rpvgrw.EQ.zero ) THEN
590  rpvgrw = one
591  ELSE
592  rpvgrw = zlangb( 'M', n, kl, ku, ab, ldab, rwork ) / rpvgrw
593  END IF
594 *
595 * Compute the reciprocal of the condition number of A.
596 *
597  CALL zgbcon( norm, n, kl, ku, afb, ldafb, ipiv, anorm, rcond,
598  \$ work, rwork, info )
599 *
600 * Compute the solution matrix X.
601 *
602  CALL zlacpy( 'Full', n, nrhs, b, ldb, x, ldx )
603  CALL zgbtrs( trans, n, kl, ku, nrhs, afb, ldafb, ipiv, x, ldx,
604  \$ info )
605 *
606 * Use iterative refinement to improve the computed solution and
607 * compute error bounds and backward error estimates for it.
608 *
609  CALL zgbrfs( trans, n, kl, ku, nrhs, ab, ldab, afb, ldafb, ipiv,
610  \$ b, ldb, x, ldx, ferr, berr, work, rwork, info )
611 *
612 * Transform the solution matrix X to a solution of the original
613 * system.
614 *
615  IF( notran ) THEN
616  IF( colequ ) THEN
617  DO 110 j = 1, nrhs
618  DO 100 i = 1, n
619  x( i, j ) = c( i )*x( i, j )
620  100 CONTINUE
621  110 CONTINUE
622  DO 120 j = 1, nrhs
623  ferr( j ) = ferr( j ) / colcnd
624  120 CONTINUE
625  END IF
626  ELSE IF( rowequ ) THEN
627  DO 140 j = 1, nrhs
628  DO 130 i = 1, n
629  x( i, j ) = r( i )*x( i, j )
630  130 CONTINUE
631  140 CONTINUE
632  DO 150 j = 1, nrhs
633  ferr( j ) = ferr( j ) / rowcnd
634  150 CONTINUE
635  END IF
636 *
637 * Set INFO = N+1 if the matrix is singular to working precision.
638 *
639  IF( rcond.LT.dlamch( 'Epsilon' ) )
640  \$ info = n + 1
641 *
642  rwork( 1 ) = rpvgrw
643  RETURN
644 *
645 * End of ZGBSVX
646 *
subroutine zlaqgb(M, N, KL, KU, AB, LDAB, R, C, ROWCND, COLCND, AMAX, EQUED)
ZLAQGB scales a general band matrix, using row and column scaling factors computed by sgbequ...
Definition: zlaqgb.f:162
subroutine zgbtrs(TRANS, N, KL, KU, NRHS, AB, LDAB, IPIV, B, LDB, INFO)
ZGBTRS
Definition: zgbtrs.f:140
subroutine zlacpy(UPLO, M, N, A, LDA, B, LDB)
ZLACPY copies all or part of one two-dimensional array to another.
Definition: zlacpy.f:105
subroutine zcopy(N, ZX, INCX, ZY, INCY)
ZCOPY
Definition: zcopy.f:52
double precision function dlamch(CMACH)
DLAMCH
Definition: dlamch.f:65
subroutine zgbcon(NORM, N, KL, KU, AB, LDAB, IPIV, ANORM, RCOND, WORK, RWORK, INFO)
ZGBCON
Definition: zgbcon.f:149
subroutine zgbrfs(TRANS, N, KL, KU, NRHS, AB, LDAB, AFB, LDAFB, IPIV, B, LDB, X, LDX, FERR, BERR, WORK, RWORK, INFO)
ZGBRFS
Definition: zgbrfs.f:208
subroutine zgbequ(M, N, KL, KU, AB, LDAB, R, C, ROWCND, COLCND, AMAX, INFO)
ZGBEQU
Definition: zgbequ.f:156
subroutine xerbla(SRNAME, INFO)
XERBLA
Definition: xerbla.f:62
double precision function zlantb(NORM, UPLO, DIAG, N, K, AB, LDAB, WORK)
ZLANTB returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a triangular band matrix.
Definition: zlantb.f:143
subroutine zgbtrf(M, N, KL, KU, AB, LDAB, IPIV, INFO)
ZGBTRF
Definition: zgbtrf.f:146
double precision function zlangb(NORM, N, KL, KU, AB, LDAB, WORK)
ZLANGB returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value ...
Definition: zlangb.f:127
logical function lsame(CA, CB)
LSAME
Definition: lsame.f:55

Here is the call graph for this function:

Here is the caller graph for this function: