LAPACK  3.6.1 LAPACK: Linear Algebra PACKage
 subroutine stpttf ( character TRANSR, character UPLO, integer N, real, dimension( 0: * ) AP, real, dimension( 0: * ) ARF, integer INFO )

STPTTF copies a triangular matrix from the standard packed format (TP) to the rectangular full packed format (TF).

Purpose:
``` STPTTF copies a triangular matrix A from standard packed format (TP)
to rectangular full packed format (TF).```
Parameters
 [in] TRANSR ``` TRANSR is CHARACTER*1 = 'N': ARF in Normal format is wanted; = 'T': ARF in Conjugate-transpose format is wanted.``` [in] UPLO ``` UPLO is CHARACTER*1 = 'U': A is upper triangular; = 'L': A is lower triangular.``` [in] N ``` N is INTEGER The order of the matrix A. N >= 0.``` [in] AP ``` AP is REAL array, dimension ( N*(N+1)/2 ), On entry, the upper or lower triangular matrix A, packed columnwise in a linear array. The j-th column of A is stored in the array AP as follows: if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.``` [out] ARF ``` ARF is REAL array, dimension ( N*(N+1)/2 ), On exit, the upper or lower triangular matrix A stored in RFP format. For a further discussion see Notes below.``` [out] INFO ``` INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value```
Date
September 2012
Further Details:
```  We first consider Rectangular Full Packed (RFP) Format when N is
even. We give an example where N = 6.

AP is Upper             AP is Lower

00 01 02 03 04 05       00
11 12 13 14 15       10 11
22 23 24 25       20 21 22
33 34 35       30 31 32 33
44 45       40 41 42 43 44
55       50 51 52 53 54 55

Let TRANSR = 'N'. RFP holds AP as follows:
For UPLO = 'U' the upper trapezoid A(0:5,0:2) consists of the last
three columns of AP upper. The lower triangle A(4:6,0:2) consists of
the transpose of the first three columns of AP upper.
For UPLO = 'L' the lower trapezoid A(1:6,0:2) consists of the first
three columns of AP lower. The upper triangle A(0:2,0:2) consists of
the transpose of the last three columns of AP lower.
This covers the case N even and TRANSR = 'N'.

RFP A                   RFP A

03 04 05                33 43 53
13 14 15                00 44 54
23 24 25                10 11 55
33 34 35                20 21 22
00 44 45                30 31 32
01 11 55                40 41 42
02 12 22                50 51 52

Now let TRANSR = 'T'. RFP A in both UPLO cases is just the
transpose of RFP A above. One therefore gets:

RFP A                   RFP A

03 13 23 33 00 01 02    33 00 10 20 30 40 50
04 14 24 34 44 11 12    43 44 11 21 31 41 51
05 15 25 35 45 55 22    53 54 55 22 32 42 52

We then consider Rectangular Full Packed (RFP) Format when N is
odd. We give an example where N = 5.

AP is Upper                 AP is Lower

00 01 02 03 04              00
11 12 13 14              10 11
22 23 24              20 21 22
33 34              30 31 32 33
44              40 41 42 43 44

Let TRANSR = 'N'. RFP holds AP as follows:
For UPLO = 'U' the upper trapezoid A(0:4,0:2) consists of the last
three columns of AP upper. The lower triangle A(3:4,0:1) consists of
the transpose of the first two columns of AP upper.
For UPLO = 'L' the lower trapezoid A(0:4,0:2) consists of the first
three columns of AP lower. The upper triangle A(0:1,1:2) consists of
the transpose of the last two columns of AP lower.
This covers the case N odd and TRANSR = 'N'.

RFP A                   RFP A

02 03 04                00 33 43
12 13 14                10 11 44
22 23 24                20 21 22
00 33 34                30 31 32
01 11 44                40 41 42

Now let TRANSR = 'T'. RFP A in both UPLO cases is just the
transpose of RFP A above. One therefore gets:

RFP A                   RFP A

02 12 22 00 01             00 10 20 30 40 50
03 13 23 33 11             33 11 21 31 41 51
04 14 24 34 44             43 44 22 32 42 52```

Definition at line 188 of file stpttf.f.

188 *
189 * -- LAPACK computational routine (version 3.4.2) --
190 * -- LAPACK is a software package provided by Univ. of Tennessee, --
191 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
192 * September 2012
193 *
194 * .. Scalar Arguments ..
195  CHARACTER transr, uplo
196  INTEGER info, n
197 * ..
198 * .. Array Arguments ..
199  REAL ap( 0: * ), arf( 0: * )
200 *
201 * =====================================================================
202 *
203 * .. Parameters ..
204 * ..
205 * .. Local Scalars ..
206  LOGICAL lower, nisodd, normaltransr
207  INTEGER n1, n2, k, nt
208  INTEGER i, j, ij
209  INTEGER ijp, jp, lda, js
210 * ..
211 * .. External Functions ..
212  LOGICAL lsame
213  EXTERNAL lsame
214 * ..
215 * .. External Subroutines ..
216  EXTERNAL xerbla
217 * ..
218 * .. Intrinsic Functions ..
219  INTRINSIC mod
220 * ..
221 * .. Executable Statements ..
222 *
223 * Test the input parameters.
224 *
225  info = 0
226  normaltransr = lsame( transr, 'N' )
227  lower = lsame( uplo, 'L' )
228  IF( .NOT.normaltransr .AND. .NOT.lsame( transr, 'T' ) ) THEN
229  info = -1
230  ELSE IF( .NOT.lower .AND. .NOT.lsame( uplo, 'U' ) ) THEN
231  info = -2
232  ELSE IF( n.LT.0 ) THEN
233  info = -3
234  END IF
235  IF( info.NE.0 ) THEN
236  CALL xerbla( 'STPTTF', -info )
237  RETURN
238  END IF
239 *
240 * Quick return if possible
241 *
242  IF( n.EQ.0 )
243  \$ RETURN
244 *
245  IF( n.EQ.1 ) THEN
246  IF( normaltransr ) THEN
247  arf( 0 ) = ap( 0 )
248  ELSE
249  arf( 0 ) = ap( 0 )
250  END IF
251  RETURN
252  END IF
253 *
254 * Size of array ARF(0:NT-1)
255 *
256  nt = n*( n+1 ) / 2
257 *
258 * Set N1 and N2 depending on LOWER
259 *
260  IF( lower ) THEN
261  n2 = n / 2
262  n1 = n - n2
263  ELSE
264  n1 = n / 2
265  n2 = n - n1
266  END IF
267 *
268 * If N is odd, set NISODD = .TRUE.
269 * If N is even, set K = N/2 and NISODD = .FALSE.
270 *
271 * set lda of ARF^C; ARF^C is (0:(N+1)/2-1,0:N-noe)
272 * where noe = 0 if n is even, noe = 1 if n is odd
273 *
274  IF( mod( n, 2 ).EQ.0 ) THEN
275  k = n / 2
276  nisodd = .false.
277  lda = n + 1
278  ELSE
279  nisodd = .true.
280  lda = n
281  END IF
282 *
283 * ARF^C has lda rows and n+1-noe cols
284 *
285  IF( .NOT.normaltransr )
286  \$ lda = ( n+1 ) / 2
287 *
288 * start execution: there are eight cases
289 *
290  IF( nisodd ) THEN
291 *
292 * N is odd
293 *
294  IF( normaltransr ) THEN
295 *
296 * N is odd and TRANSR = 'N'
297 *
298  IF( lower ) THEN
299 *
300 * N is odd, TRANSR = 'N', and UPLO = 'L'
301 *
302  ijp = 0
303  jp = 0
304  DO j = 0, n2
305  DO i = j, n - 1
306  ij = i + jp
307  arf( ij ) = ap( ijp )
308  ijp = ijp + 1
309  END DO
310  jp = jp + lda
311  END DO
312  DO i = 0, n2 - 1
313  DO j = 1 + i, n2
314  ij = i + j*lda
315  arf( ij ) = ap( ijp )
316  ijp = ijp + 1
317  END DO
318  END DO
319 *
320  ELSE
321 *
322 * N is odd, TRANSR = 'N', and UPLO = 'U'
323 *
324  ijp = 0
325  DO j = 0, n1 - 1
326  ij = n2 + j
327  DO i = 0, j
328  arf( ij ) = ap( ijp )
329  ijp = ijp + 1
330  ij = ij + lda
331  END DO
332  END DO
333  js = 0
334  DO j = n1, n - 1
335  ij = js
336  DO ij = js, js + j
337  arf( ij ) = ap( ijp )
338  ijp = ijp + 1
339  END DO
340  js = js + lda
341  END DO
342 *
343  END IF
344 *
345  ELSE
346 *
347 * N is odd and TRANSR = 'T'
348 *
349  IF( lower ) THEN
350 *
351 * N is odd, TRANSR = 'T', and UPLO = 'L'
352 *
353  ijp = 0
354  DO i = 0, n2
355  DO ij = i*( lda+1 ), n*lda - 1, lda
356  arf( ij ) = ap( ijp )
357  ijp = ijp + 1
358  END DO
359  END DO
360  js = 1
361  DO j = 0, n2 - 1
362  DO ij = js, js + n2 - j - 1
363  arf( ij ) = ap( ijp )
364  ijp = ijp + 1
365  END DO
366  js = js + lda + 1
367  END DO
368 *
369  ELSE
370 *
371 * N is odd, TRANSR = 'T', and UPLO = 'U'
372 *
373  ijp = 0
374  js = n2*lda
375  DO j = 0, n1 - 1
376  DO ij = js, js + j
377  arf( ij ) = ap( ijp )
378  ijp = ijp + 1
379  END DO
380  js = js + lda
381  END DO
382  DO i = 0, n1
383  DO ij = i, i + ( n1+i )*lda, lda
384  arf( ij ) = ap( ijp )
385  ijp = ijp + 1
386  END DO
387  END DO
388 *
389  END IF
390 *
391  END IF
392 *
393  ELSE
394 *
395 * N is even
396 *
397  IF( normaltransr ) THEN
398 *
399 * N is even and TRANSR = 'N'
400 *
401  IF( lower ) THEN
402 *
403 * N is even, TRANSR = 'N', and UPLO = 'L'
404 *
405  ijp = 0
406  jp = 0
407  DO j = 0, k - 1
408  DO i = j, n - 1
409  ij = 1 + i + jp
410  arf( ij ) = ap( ijp )
411  ijp = ijp + 1
412  END DO
413  jp = jp + lda
414  END DO
415  DO i = 0, k - 1
416  DO j = i, k - 1
417  ij = i + j*lda
418  arf( ij ) = ap( ijp )
419  ijp = ijp + 1
420  END DO
421  END DO
422 *
423  ELSE
424 *
425 * N is even, TRANSR = 'N', and UPLO = 'U'
426 *
427  ijp = 0
428  DO j = 0, k - 1
429  ij = k + 1 + j
430  DO i = 0, j
431  arf( ij ) = ap( ijp )
432  ijp = ijp + 1
433  ij = ij + lda
434  END DO
435  END DO
436  js = 0
437  DO j = k, n - 1
438  ij = js
439  DO ij = js, js + j
440  arf( ij ) = ap( ijp )
441  ijp = ijp + 1
442  END DO
443  js = js + lda
444  END DO
445 *
446  END IF
447 *
448  ELSE
449 *
450 * N is even and TRANSR = 'T'
451 *
452  IF( lower ) THEN
453 *
454 * N is even, TRANSR = 'T', and UPLO = 'L'
455 *
456  ijp = 0
457  DO i = 0, k - 1
458  DO ij = i + ( i+1 )*lda, ( n+1 )*lda - 1, lda
459  arf( ij ) = ap( ijp )
460  ijp = ijp + 1
461  END DO
462  END DO
463  js = 0
464  DO j = 0, k - 1
465  DO ij = js, js + k - j - 1
466  arf( ij ) = ap( ijp )
467  ijp = ijp + 1
468  END DO
469  js = js + lda + 1
470  END DO
471 *
472  ELSE
473 *
474 * N is even, TRANSR = 'T', and UPLO = 'U'
475 *
476  ijp = 0
477  js = ( k+1 )*lda
478  DO j = 0, k - 1
479  DO ij = js, js + j
480  arf( ij ) = ap( ijp )
481  ijp = ijp + 1
482  END DO
483  js = js + lda
484  END DO
485  DO i = 0, k - 1
486  DO ij = i, i + ( k+i )*lda, lda
487  arf( ij ) = ap( ijp )
488  ijp = ijp + 1
489  END DO
490  END DO
491 *
492  END IF
493 *
494  END IF
495 *
496  END IF
497 *
498  RETURN
499 *
500 * End of STPTTF
501 *
subroutine xerbla(SRNAME, INFO)
XERBLA
Definition: xerbla.f:62
logical function lsame(CA, CB)
LSAME
Definition: lsame.f:55

Here is the call graph for this function:

Here is the caller graph for this function: