LAPACK  3.6.1 LAPACK: Linear Algebra PACKage
Collaboration diagram for real:


This browser is not able to show SVG: try Firefox, Chrome, Safari, or Opera instead.

## Functions

real function sla_porcond (UPLO, N, A, LDA, AF, LDAF, CMODE, C, INFO, WORK, IWORK)
SLA_PORCOND estimates the Skeel condition number for a symmetric positive-definite matrix. More...

subroutine sla_porfsx_extended (PREC_TYPE, UPLO, N, NRHS, A, LDA, AF, LDAF, COLEQU, C, B, LDB, Y, LDY, BERR_OUT, N_NORMS, ERR_BNDS_NORM, ERR_BNDS_COMP, RES, AYB, DY, Y_TAIL, RCOND, ITHRESH, RTHRESH, DZ_UB, IGNORE_CWISE, INFO)
SLA_PORFSX_EXTENDED improves the computed solution to a system of linear equations for symmetric or Hermitian positive-definite matrices by performing extra-precise iterative refinement and provides error bounds and backward error estimates for the solution. More...

real function sla_porpvgrw (UPLO, NCOLS, A, LDA, AF, LDAF, WORK)
SLA_PORPVGRW computes the reciprocal pivot growth factor norm(A)/norm(U) for a symmetric or Hermitian positive-definite matrix. More...

subroutine spocon (UPLO, N, A, LDA, ANORM, RCOND, WORK, IWORK, INFO)
SPOCON More...

subroutine spoequ (N, A, LDA, S, SCOND, AMAX, INFO)
SPOEQU More...

subroutine spoequb (N, A, LDA, S, SCOND, AMAX, INFO)
SPOEQUB More...

subroutine sporfs (UPLO, N, NRHS, A, LDA, AF, LDAF, B, LDB, X, LDX, FERR, BERR, WORK, IWORK, INFO)
SPORFS More...

subroutine sporfsx (UPLO, EQUED, N, NRHS, A, LDA, AF, LDAF, S, B, LDB, X, LDX, RCOND, BERR, N_ERR_BNDS, ERR_BNDS_NORM, ERR_BNDS_COMP, NPARAMS, PARAMS, WORK, IWORK, INFO)
SPORFSX More...

subroutine spotf2 (UPLO, N, A, LDA, INFO)
SPOTF2 computes the Cholesky factorization of a symmetric/Hermitian positive definite matrix (unblocked algorithm). More...

subroutine spotrf (UPLO, N, A, LDA, INFO)
SPOTRF More...

recursive subroutine spotrf2 (UPLO, N, A, LDA, INFO)
SPOTRF2 More...

subroutine spotri (UPLO, N, A, LDA, INFO)
SPOTRI More...

subroutine spotrs (UPLO, N, NRHS, A, LDA, B, LDB, INFO)
SPOTRS More...

## Detailed Description

This is the group of real computational functions for PO matrices