LAPACK  3.6.1 LAPACK: Linear Algebra PACKage
 subroutine dchkgb ( logical, dimension( * ) DOTYPE, integer NM, integer, dimension( * ) MVAL, integer NN, integer, dimension( * ) NVAL, integer NNB, integer, dimension( * ) NBVAL, integer NNS, integer, dimension( * ) NSVAL, double precision THRESH, logical TSTERR, double precision, dimension( * ) A, integer LA, double precision, dimension( * ) AFAC, integer LAFAC, double precision, dimension( * ) B, double precision, dimension( * ) X, double precision, dimension( * ) XACT, double precision, dimension( * ) WORK, double precision, dimension( * ) RWORK, integer, dimension( * ) IWORK, integer NOUT )

DCHKGB

Purpose:
DCHKGB tests DGBTRF, -TRS, -RFS, and -CON
Parameters
 [in] DOTYPE DOTYPE is LOGICAL array, dimension (NTYPES) The matrix types to be used for testing. Matrices of type j (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) = .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used. [in] NM NM is INTEGER The number of values of M contained in the vector MVAL. [in] MVAL MVAL is INTEGER array, dimension (NM) The values of the matrix row dimension M. [in] NN NN is INTEGER The number of values of N contained in the vector NVAL. [in] NVAL NVAL is INTEGER array, dimension (NN) The values of the matrix column dimension N. [in] NNB NNB is INTEGER The number of values of NB contained in the vector NBVAL. [in] NBVAL NBVAL is INTEGER array, dimension (NNB) The values of the blocksize NB. [in] NNS NNS is INTEGER The number of values of NRHS contained in the vector NSVAL. [in] NSVAL NSVAL is INTEGER array, dimension (NNS) The values of the number of right hand sides NRHS. [in] THRESH THRESH is DOUBLE PRECISION The threshold value for the test ratios. A result is included in the output file if RESULT >= THRESH. To have every test ratio printed, use THRESH = 0. [in] TSTERR TSTERR is LOGICAL Flag that indicates whether error exits are to be tested. [out] A A is DOUBLE PRECISION array, dimension (LA) [in] LA LA is INTEGER The length of the array A. LA >= (KLMAX+KUMAX+1)*NMAX where KLMAX is the largest entry in the local array KLVAL, KUMAX is the largest entry in the local array KUVAL and NMAX is the largest entry in the input array NVAL. [out] AFAC AFAC is DOUBLE PRECISION array, dimension (LAFAC) [in] LAFAC LAFAC is INTEGER The length of the array AFAC. LAFAC >= (2*KLMAX+KUMAX+1)*NMAX where KLMAX is the largest entry in the local array KLVAL, KUMAX is the largest entry in the local array KUVAL and NMAX is the largest entry in the input array NVAL. [out] B B is DOUBLE PRECISION array, dimension (NMAX*NSMAX) where NSMAX is the largest entry in NSVAL. [out] X X is DOUBLE PRECISION array, dimension (NMAX*NSMAX) [out] XACT XACT is DOUBLE PRECISION array, dimension (NMAX*NSMAX) [out] WORK WORK is DOUBLE PRECISION array, dimension (NMAX*max(3,NSMAX,NMAX)) [out] RWORK RWORK is DOUBLE PRECISION array, dimension (max(NMAX,2*NSMAX)) [out] IWORK IWORK is INTEGER array, dimension (2*NMAX) [in] NOUT NOUT is INTEGER The unit number for output.
Date
November 2011

Definition at line 193 of file dchkgb.f.

193 *
194 * -- LAPACK test routine (version 3.4.0) --
195 * -- LAPACK is a software package provided by Univ. of Tennessee, --
196 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
197 * November 2011
198 *
199 * .. Scalar Arguments ..
200  LOGICAL tsterr
201  INTEGER la, lafac, nm, nn, nnb, nns, nout
202  DOUBLE PRECISION thresh
203 * ..
204 * .. Array Arguments ..
205  LOGICAL dotype( * )
206  INTEGER iwork( * ), mval( * ), nbval( * ), nsval( * ),
207  \$ nval( * )
208  DOUBLE PRECISION a( * ), afac( * ), b( * ), rwork( * ),
209  \$ work( * ), x( * ), xact( * )
210 * ..
211 *
212 * =====================================================================
213 *
214 * .. Parameters ..
215  DOUBLE PRECISION one, zero
216  parameter ( one = 1.0d+0, zero = 0.0d+0 )
217  INTEGER ntypes, ntests
218  parameter ( ntypes = 8, ntests = 7 )
219  INTEGER nbw, ntran
220  parameter ( nbw = 4, ntran = 3 )
221 * ..
222 * .. Local Scalars ..
223  LOGICAL trfcon, zerot
224  CHARACTER dist, norm, trans, TYPE, xtype
225  CHARACTER*3 path
226  INTEGER i, i1, i2, ikl, iku, im, imat, in, inb, info,
227  \$ ioff, irhs, itran, izero, j, k, kl, koff, ku,
228  \$ lda, ldafac, ldb, m, mode, n, nb, nerrs, nfail,
229  \$ nimat, nkl, nku, nrhs, nrun
230  DOUBLE PRECISION ainvnm, anorm, anormi, anormo, cndnum, rcond,
231  \$ rcondc, rcondi, rcondo
232 * ..
233 * .. Local Arrays ..
234  CHARACTER transs( ntran )
235  INTEGER iseed( 4 ), iseedy( 4 ), klval( nbw ),
236  \$ kuval( nbw )
237  DOUBLE PRECISION result( ntests )
238 * ..
239 * .. External Functions ..
240  DOUBLE PRECISION dget06, dlangb, dlange
241  EXTERNAL dget06, dlangb, dlange
242 * ..
243 * .. External Subroutines ..
244  EXTERNAL alaerh, alahd, alasum, dcopy, derrge, dgbcon,
247  \$ xlaenv
248 * ..
249 * .. Intrinsic Functions ..
250  INTRINSIC max, min
251 * ..
252 * .. Scalars in Common ..
253  LOGICAL lerr, ok
254  CHARACTER*32 srnamt
255  INTEGER infot, nunit
256 * ..
257 * .. Common blocks ..
258  COMMON / infoc / infot, nunit, ok, lerr
259  COMMON / srnamc / srnamt
260 * ..
261 * .. Data statements ..
262  DATA iseedy / 1988, 1989, 1990, 1991 / ,
263  \$ transs / 'N', 'T', 'C' /
264 * ..
265 * .. Executable Statements ..
266 *
267 * Initialize constants and the random number seed.
268 *
269  path( 1: 1 ) = 'Double precision'
270  path( 2: 3 ) = 'GB'
271  nrun = 0
272  nfail = 0
273  nerrs = 0
274  DO 10 i = 1, 4
275  iseed( i ) = iseedy( i )
276  10 CONTINUE
277 *
278 * Test the error exits
279 *
280  IF( tsterr )
281  \$ CALL derrge( path, nout )
282  infot = 0
283  CALL xlaenv( 2, 2 )
284 *
285 * Initialize the first value for the lower and upper bandwidths.
286 *
287  klval( 1 ) = 0
288  kuval( 1 ) = 0
289 *
290 * Do for each value of M in MVAL
291 *
292  DO 160 im = 1, nm
293  m = mval( im )
294 *
295 * Set values to use for the lower bandwidth.
296 *
297  klval( 2 ) = m + ( m+1 ) / 4
298 *
299 * KLVAL( 2 ) = MAX( M-1, 0 )
300 *
301  klval( 3 ) = ( 3*m-1 ) / 4
302  klval( 4 ) = ( m+1 ) / 4
303 *
304 * Do for each value of N in NVAL
305 *
306  DO 150 in = 1, nn
307  n = nval( in )
308  xtype = 'N'
309 *
310 * Set values to use for the upper bandwidth.
311 *
312  kuval( 2 ) = n + ( n+1 ) / 4
313 *
314 * KUVAL( 2 ) = MAX( N-1, 0 )
315 *
316  kuval( 3 ) = ( 3*n-1 ) / 4
317  kuval( 4 ) = ( n+1 ) / 4
318 *
319 * Set limits on the number of loop iterations.
320 *
321  nkl = min( m+1, 4 )
322  IF( n.EQ.0 )
323  \$ nkl = 2
324  nku = min( n+1, 4 )
325  IF( m.EQ.0 )
326  \$ nku = 2
327  nimat = ntypes
328  IF( m.LE.0 .OR. n.LE.0 )
329  \$ nimat = 1
330 *
331  DO 140 ikl = 1, nkl
332 *
333 * Do for KL = 0, (5*M+1)/4, (3M-1)/4, and (M+1)/4. This
334 * order makes it easier to skip redundant values for small
335 * values of M.
336 *
337  kl = klval( ikl )
338  DO 130 iku = 1, nku
339 *
340 * Do for KU = 0, (5*N+1)/4, (3N-1)/4, and (N+1)/4. This
341 * order makes it easier to skip redundant values for
342 * small values of N.
343 *
344  ku = kuval( iku )
345 *
346 * Check that A and AFAC are big enough to generate this
347 * matrix.
348 *
349  lda = kl + ku + 1
350  ldafac = 2*kl + ku + 1
351  IF( ( lda*n ).GT.la .OR. ( ldafac*n ).GT.lafac ) THEN
352  IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
353  \$ CALL alahd( nout, path )
354  IF( n*( kl+ku+1 ).GT.la ) THEN
355  WRITE( nout, fmt = 9999 )la, m, n, kl, ku,
356  \$ n*( kl+ku+1 )
357  nerrs = nerrs + 1
358  END IF
359  IF( n*( 2*kl+ku+1 ).GT.lafac ) THEN
360  WRITE( nout, fmt = 9998 )lafac, m, n, kl, ku,
361  \$ n*( 2*kl+ku+1 )
362  nerrs = nerrs + 1
363  END IF
364  GO TO 130
365  END IF
366 *
367  DO 120 imat = 1, nimat
368 *
369 * Do the tests only if DOTYPE( IMAT ) is true.
370 *
371  IF( .NOT.dotype( imat ) )
372  \$ GO TO 120
373 *
374 * Skip types 2, 3, or 4 if the matrix size is too
375 * small.
376 *
377  zerot = imat.GE.2 .AND. imat.LE.4
378  IF( zerot .AND. n.LT.imat-1 )
379  \$ GO TO 120
380 *
381  IF( .NOT.zerot .OR. .NOT.dotype( 1 ) ) THEN
382 *
383 * Set up parameters with DLATB4 and generate a
384 * test matrix with DLATMS.
385 *
386  CALL dlatb4( path, imat, m, n, TYPE, kl, ku,
387  \$ anorm, mode, cndnum, dist )
388 *
389  koff = max( 1, ku+2-n )
390  DO 20 i = 1, koff - 1
391  a( i ) = zero
392  20 CONTINUE
393  srnamt = 'DLATMS'
394  CALL dlatms( m, n, dist, iseed, TYPE, rwork,
395  \$ mode, cndnum, anorm, kl, ku, 'Z',
396  \$ a( koff ), lda, work, info )
397 *
398 * Check the error code from DLATMS.
399 *
400  IF( info.NE.0 ) THEN
401  CALL alaerh( path, 'DLATMS', info, 0, ' ', m,
402  \$ n, kl, ku, -1, imat, nfail,
403  \$ nerrs, nout )
404  GO TO 120
405  END IF
406  ELSE IF( izero.GT.0 ) THEN
407 *
408 * Use the same matrix for types 3 and 4 as for
409 * type 2 by copying back the zeroed out column.
410 *
411  CALL dcopy( i2-i1+1, b, 1, a( ioff+i1 ), 1 )
412  END IF
413 *
414 * For types 2, 3, and 4, zero one or more columns of
415 * the matrix to test that INFO is returned correctly.
416 *
417  izero = 0
418  IF( zerot ) THEN
419  IF( imat.EQ.2 ) THEN
420  izero = 1
421  ELSE IF( imat.EQ.3 ) THEN
422  izero = min( m, n )
423  ELSE
424  izero = min( m, n ) / 2 + 1
425  END IF
426  ioff = ( izero-1 )*lda
427  IF( imat.LT.4 ) THEN
428 *
429 * Store the column to be zeroed out in B.
430 *
431  i1 = max( 1, ku+2-izero )
432  i2 = min( kl+ku+1, ku+1+( m-izero ) )
433  CALL dcopy( i2-i1+1, a( ioff+i1 ), 1, b, 1 )
434 *
435  DO 30 i = i1, i2
436  a( ioff+i ) = zero
437  30 CONTINUE
438  ELSE
439  DO 50 j = izero, n
440  DO 40 i = max( 1, ku+2-j ),
441  \$ min( kl+ku+1, ku+1+( m-j ) )
442  a( ioff+i ) = zero
443  40 CONTINUE
444  ioff = ioff + lda
445  50 CONTINUE
446  END IF
447  END IF
448 *
449 * These lines, if used in place of the calls in the
450 * loop over INB, cause the code to bomb on a Sun
451 * SPARCstation.
452 *
453 * ANORMO = DLANGB( 'O', N, KL, KU, A, LDA, RWORK )
454 * ANORMI = DLANGB( 'I', N, KL, KU, A, LDA, RWORK )
455 *
456 * Do for each blocksize in NBVAL
457 *
458  DO 110 inb = 1, nnb
459  nb = nbval( inb )
460  CALL xlaenv( 1, nb )
461 *
462 * Compute the LU factorization of the band matrix.
463 *
464  IF( m.GT.0 .AND. n.GT.0 )
465  \$ CALL dlacpy( 'Full', kl+ku+1, n, a, lda,
466  \$ afac( kl+1 ), ldafac )
467  srnamt = 'DGBTRF'
468  CALL dgbtrf( m, n, kl, ku, afac, ldafac, iwork,
469  \$ info )
470 *
471 * Check error code from DGBTRF.
472 *
473  IF( info.NE.izero )
474  \$ CALL alaerh( path, 'DGBTRF', info, izero,
475  \$ ' ', m, n, kl, ku, nb, imat,
476  \$ nfail, nerrs, nout )
477  trfcon = .false.
478 *
479 *+ TEST 1
480 * Reconstruct matrix from factors and compute
481 * residual.
482 *
483  CALL dgbt01( m, n, kl, ku, a, lda, afac, ldafac,
484  \$ iwork, work, result( 1 ) )
485 *
486 * Print information about the tests so far that
487 * did not pass the threshold.
488 *
489  IF( result( 1 ).GE.thresh ) THEN
490  IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
491  \$ CALL alahd( nout, path )
492  WRITE( nout, fmt = 9997 )m, n, kl, ku, nb,
493  \$ imat, 1, result( 1 )
494  nfail = nfail + 1
495  END IF
496  nrun = nrun + 1
497 *
498 * Skip the remaining tests if this is not the
499 * first block size or if M .ne. N.
500 *
501  IF( inb.GT.1 .OR. m.NE.n )
502  \$ GO TO 110
503 *
504  anormo = dlangb( 'O', n, kl, ku, a, lda, rwork )
505  anormi = dlangb( 'I', n, kl, ku, a, lda, rwork )
506 *
507  IF( info.EQ.0 ) THEN
508 *
509 * Form the inverse of A so we can get a good
510 * estimate of CNDNUM = norm(A) * norm(inv(A)).
511 *
512  ldb = max( 1, n )
513  CALL dlaset( 'Full', n, n, zero, one, work,
514  \$ ldb )
515  srnamt = 'DGBTRS'
516  CALL dgbtrs( 'No transpose', n, kl, ku, n,
517  \$ afac, ldafac, iwork, work, ldb,
518  \$ info )
519 *
520 * Compute the 1-norm condition number of A.
521 *
522  ainvnm = dlange( 'O', n, n, work, ldb,
523  \$ rwork )
524  IF( anormo.LE.zero .OR. ainvnm.LE.zero ) THEN
525  rcondo = one
526  ELSE
527  rcondo = ( one / anormo ) / ainvnm
528  END IF
529 *
530 * Compute the infinity-norm condition number of
531 * A.
532 *
533  ainvnm = dlange( 'I', n, n, work, ldb,
534  \$ rwork )
535  IF( anormi.LE.zero .OR. ainvnm.LE.zero ) THEN
536  rcondi = one
537  ELSE
538  rcondi = ( one / anormi ) / ainvnm
539  END IF
540  ELSE
541 *
542 * Do only the condition estimate if INFO.NE.0.
543 *
544  trfcon = .true.
545  rcondo = zero
546  rcondi = zero
547  END IF
548 *
549 * Skip the solve tests if the matrix is singular.
550 *
551  IF( trfcon )
552  \$ GO TO 90
553 *
554  DO 80 irhs = 1, nns
555  nrhs = nsval( irhs )
556  xtype = 'N'
557 *
558  DO 70 itran = 1, ntran
559  trans = transs( itran )
560  IF( itran.EQ.1 ) THEN
561  rcondc = rcondo
562  norm = 'O'
563  ELSE
564  rcondc = rcondi
565  norm = 'I'
566  END IF
567 *
568 *+ TEST 2:
569 * Solve and compute residual for A * X = B.
570 *
571  srnamt = 'DLARHS'
572  CALL dlarhs( path, xtype, ' ', trans, n,
573  \$ n, kl, ku, nrhs, a, lda,
574  \$ xact, ldb, b, ldb, iseed,
575  \$ info )
576  xtype = 'C'
577  CALL dlacpy( 'Full', n, nrhs, b, ldb, x,
578  \$ ldb )
579 *
580  srnamt = 'DGBTRS'
581  CALL dgbtrs( trans, n, kl, ku, nrhs, afac,
582  \$ ldafac, iwork, x, ldb, info )
583 *
584 * Check error code from DGBTRS.
585 *
586  IF( info.NE.0 )
587  \$ CALL alaerh( path, 'DGBTRS', info, 0,
588  \$ trans, n, n, kl, ku, -1,
589  \$ imat, nfail, nerrs, nout )
590 *
591  CALL dlacpy( 'Full', n, nrhs, b, ldb,
592  \$ work, ldb )
593  CALL dgbt02( trans, m, n, kl, ku, nrhs, a,
594  \$ lda, x, ldb, work, ldb,
595  \$ result( 2 ) )
596 *
597 *+ TEST 3:
598 * Check solution from generated exact
599 * solution.
600 *
601  CALL dget04( n, nrhs, x, ldb, xact, ldb,
602  \$ rcondc, result( 3 ) )
603 *
604 *+ TESTS 4, 5, 6:
605 * Use iterative refinement to improve the
606 * solution.
607 *
608  srnamt = 'DGBRFS'
609  CALL dgbrfs( trans, n, kl, ku, nrhs, a,
610  \$ lda, afac, ldafac, iwork, b,
611  \$ ldb, x, ldb, rwork,
612  \$ rwork( nrhs+1 ), work,
613  \$ iwork( n+1 ), info )
614 *
615 * Check error code from DGBRFS.
616 *
617  IF( info.NE.0 )
618  \$ CALL alaerh( path, 'DGBRFS', info, 0,
619  \$ trans, n, n, kl, ku, nrhs,
620  \$ imat, nfail, nerrs, nout )
621 *
622  CALL dget04( n, nrhs, x, ldb, xact, ldb,
623  \$ rcondc, result( 4 ) )
624  CALL dgbt05( trans, n, kl, ku, nrhs, a,
625  \$ lda, b, ldb, x, ldb, xact,
626  \$ ldb, rwork, rwork( nrhs+1 ),
627  \$ result( 5 ) )
628  DO 60 k = 2, 6
629  IF( result( k ).GE.thresh ) THEN
630  IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
631  \$ CALL alahd( nout, path )
632  WRITE( nout, fmt = 9996 )trans, n,
633  \$ kl, ku, nrhs, imat, k,
634  \$ result( k )
635  nfail = nfail + 1
636  END IF
637  60 CONTINUE
638  nrun = nrun + 5
639  70 CONTINUE
640  80 CONTINUE
641 *
642 *+ TEST 7:
643 * Get an estimate of RCOND = 1/CNDNUM.
644 *
645  90 CONTINUE
646  DO 100 itran = 1, 2
647  IF( itran.EQ.1 ) THEN
648  anorm = anormo
649  rcondc = rcondo
650  norm = 'O'
651  ELSE
652  anorm = anormi
653  rcondc = rcondi
654  norm = 'I'
655  END IF
656  srnamt = 'DGBCON'
657  CALL dgbcon( norm, n, kl, ku, afac, ldafac,
658  \$ iwork, anorm, rcond, work,
659  \$ iwork( n+1 ), info )
660 *
661 * Check error code from DGBCON.
662 *
663  IF( info.NE.0 )
664  \$ CALL alaerh( path, 'DGBCON', info, 0,
665  \$ norm, n, n, kl, ku, -1, imat,
666  \$ nfail, nerrs, nout )
667 *
668  result( 7 ) = dget06( rcond, rcondc )
669 *
670 * Print information about the tests that did
671 * not pass the threshold.
672 *
673  IF( result( 7 ).GE.thresh ) THEN
674  IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
675  \$ CALL alahd( nout, path )
676  WRITE( nout, fmt = 9995 )norm, n, kl, ku,
677  \$ imat, 7, result( 7 )
678  nfail = nfail + 1
679  END IF
680  nrun = nrun + 1
681  100 CONTINUE
682 *
683  110 CONTINUE
684  120 CONTINUE
685  130 CONTINUE
686  140 CONTINUE
687  150 CONTINUE
688  160 CONTINUE
689 *
690 * Print a summary of the results.
691 *
692  CALL alasum( path, nout, nfail, nrun, nerrs )
693 *
694  9999 FORMAT( ' *** In DCHKGB, LA=', i5, ' is too small for M=', i5,
695  \$ ', N=', i5, ', KL=', i4, ', KU=', i4,
696  \$ / ' ==> Increase LA to at least ', i5 )
697  9998 FORMAT( ' *** In DCHKGB, LAFAC=', i5, ' is too small for M=', i5,
698  \$ ', N=', i5, ', KL=', i4, ', KU=', i4,
699  \$ / ' ==> Increase LAFAC to at least ', i5 )
700  9997 FORMAT( ' M =', i5, ', N =', i5, ', KL=', i5, ', KU=', i5,
701  \$ ', NB =', i4, ', type ', i1, ', test(', i1, ')=', g12.5 )
702  9996 FORMAT( ' TRANS=''', a1, ''', N=', i5, ', KL=', i5, ', KU=', i5,
703  \$ ', NRHS=', i3, ', type ', i1, ', test(', i1, ')=', g12.5 )
704  9995 FORMAT( ' NORM =''', a1, ''', N=', i5, ', KL=', i5, ', KU=', i5,
705  \$ ',', 10x, ' type ', i1, ', test(', i1, ')=', g12.5 )
706 *
707  RETURN
708 *
709 * End of DCHKGB
710 *
subroutine dlaset(UPLO, M, N, ALPHA, BETA, A, LDA)
DLASET initializes the off-diagonal elements and the diagonal elements of a matrix to given values...
Definition: dlaset.f:112
subroutine dgbrfs(TRANS, N, KL, KU, NRHS, AB, LDAB, AFB, LDAFB, IPIV, B, LDB, X, LDX, FERR, BERR, WORK, IWORK, INFO)
DGBRFS
Definition: dgbrfs.f:207
subroutine alahd(IOUNIT, PATH)
ALAHD
Definition: alahd.f:95
subroutine alaerh(PATH, SUBNAM, INFO, INFOE, OPTS, M, N, KL, KU, N5, IMAT, NFAIL, NERRS, NOUT)
ALAERH
Definition: alaerh.f:149
subroutine dlarhs(PATH, XTYPE, UPLO, TRANS, M, N, KL, KU, NRHS, A, LDA, X, LDX, B, LDB, ISEED, INFO)
DLARHS
Definition: dlarhs.f:206
subroutine dcopy(N, DX, INCX, DY, INCY)
DCOPY
Definition: dcopy.f:53
subroutine dgbt05(TRANS, N, KL, KU, NRHS, AB, LDAB, B, LDB, X, LDX, XACT, LDXACT, FERR, BERR, RESLTS)
DGBT05
Definition: dgbt05.f:178
subroutine dlacpy(UPLO, M, N, A, LDA, B, LDB)
DLACPY copies all or part of one two-dimensional array to another.
Definition: dlacpy.f:105
subroutine derrge(PATH, NUNIT)
DERRGE
Definition: derrge.f:57
subroutine xlaenv(ISPEC, NVALUE)
XLAENV
Definition: xlaenv.f:83
double precision function dlange(NORM, M, N, A, LDA, WORK)
DLANGE returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value ...
Definition: dlange.f:116
double precision function dlangb(NORM, N, KL, KU, AB, LDAB, WORK)
DLANGB returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value ...
Definition: dlangb.f:126
subroutine dgbtrf(M, N, KL, KU, AB, LDAB, IPIV, INFO)
DGBTRF
Definition: dgbtrf.f:146
subroutine dgbt02(TRANS, M, N, KL, KU, NRHS, A, LDA, X, LDX, B, LDB, RESID)
DGBT02
Definition: dgbt02.f:141
subroutine dlatb4(PATH, IMAT, M, N, TYPE, KL, KU, ANORM, MODE, CNDNUM, DIST)
DLATB4
Definition: dlatb4.f:122
subroutine dget04(N, NRHS, X, LDX, XACT, LDXACT, RCOND, RESID)
DGET04
Definition: dget04.f:104
double precision function dget06(RCOND, RCONDC)
DGET06
Definition: dget06.f:57
subroutine dgbt01(M, N, KL, KU, A, LDA, AFAC, LDAFAC, IPIV, WORK, RESID)
DGBT01
Definition: dgbt01.f:128
subroutine dlatms(M, N, DIST, ISEED, SYM, D, MODE, COND, DMAX, KL, KU, PACK, A, LDA, WORK, INFO)
DLATMS
Definition: dlatms.f:323
subroutine dgbcon(NORM, N, KL, KU, AB, LDAB, IPIV, ANORM, RCOND, WORK, IWORK, INFO)
DGBCON
Definition: dgbcon.f:148
subroutine dgbtrs(TRANS, N, KL, KU, NRHS, AB, LDAB, IPIV, B, LDB, INFO)
DGBTRS
Definition: dgbtrs.f:140
subroutine alasum(TYPE, NOUT, NFAIL, NRUN, NERRS)
ALASUM
Definition: alasum.f:75

Here is the call graph for this function:

Here is the caller graph for this function: