LAPACK  3.6.1 LAPACK: Linear Algebra PACKage
 subroutine ssysvx ( character FACT, character UPLO, integer N, integer NRHS, real, dimension( lda, * ) A, integer LDA, real, dimension( ldaf, * ) AF, integer LDAF, integer, dimension( * ) IPIV, real, dimension( ldb, * ) B, integer LDB, real, dimension( ldx, * ) X, integer LDX, real RCOND, real, dimension( * ) FERR, real, dimension( * ) BERR, real, dimension( * ) WORK, integer LWORK, integer, dimension( * ) IWORK, integer INFO )

SSYSVX computes the solution to system of linear equations A * X = B for SY matrices

Purpose:
``` SSYSVX uses the diagonal pivoting factorization to compute the
solution to a real system of linear equations A * X = B,
where A is an N-by-N symmetric matrix and X and B are N-by-NRHS
matrices.

Error bounds on the solution and a condition estimate are also
provided.```
Description:
``` The following steps are performed:

1. If FACT = 'N', the diagonal pivoting method is used to factor A.
The form of the factorization is
A = U * D * U**T,  if UPLO = 'U', or
A = L * D * L**T,  if UPLO = 'L',
where U (or L) is a product of permutation and unit upper (lower)
triangular matrices, and D is symmetric and block diagonal with
1-by-1 and 2-by-2 diagonal blocks.

2. If some D(i,i)=0, so that D is exactly singular, then the routine
returns with INFO = i. Otherwise, the factored form of A is used
to estimate the condition number of the matrix A.  If the
reciprocal of the condition number is less than machine precision,
INFO = N+1 is returned as a warning, but the routine still goes on
to solve for X and compute error bounds as described below.

3. The system of equations is solved for X using the factored form
of A.

4. Iterative refinement is applied to improve the computed solution
matrix and calculate error bounds and backward error estimates
for it.```
Parameters
 [in] FACT ``` FACT is CHARACTER*1 Specifies whether or not the factored form of A has been supplied on entry. = 'F': On entry, AF and IPIV contain the factored form of A. AF and IPIV will not be modified. = 'N': The matrix A will be copied to AF and factored.``` [in] UPLO ``` UPLO is CHARACTER*1 = 'U': Upper triangle of A is stored; = 'L': Lower triangle of A is stored.``` [in] N ``` N is INTEGER The number of linear equations, i.e., the order of the matrix A. N >= 0.``` [in] NRHS ``` NRHS is INTEGER The number of right hand sides, i.e., the number of columns of the matrices B and X. NRHS >= 0.``` [in] A ``` A is REAL array, dimension (LDA,N) The symmetric matrix A. If UPLO = 'U', the leading N-by-N upper triangular part of A contains the upper triangular part of the matrix A, and the strictly lower triangular part of A is not referenced. If UPLO = 'L', the leading N-by-N lower triangular part of A contains the lower triangular part of the matrix A, and the strictly upper triangular part of A is not referenced.``` [in] LDA ``` LDA is INTEGER The leading dimension of the array A. LDA >= max(1,N).``` [in,out] AF ``` AF is REAL array, dimension (LDAF,N) If FACT = 'F', then AF is an input argument and on entry contains the block diagonal matrix D and the multipliers used to obtain the factor U or L from the factorization A = U*D*U**T or A = L*D*L**T as computed by SSYTRF. If FACT = 'N', then AF is an output argument and on exit returns the block diagonal matrix D and the multipliers used to obtain the factor U or L from the factorization A = U*D*U**T or A = L*D*L**T.``` [in] LDAF ``` LDAF is INTEGER The leading dimension of the array AF. LDAF >= max(1,N).``` [in,out] IPIV ``` IPIV is INTEGER array, dimension (N) If FACT = 'F', then IPIV is an input argument and on entry contains details of the interchanges and the block structure of D, as determined by SSYTRF. If IPIV(k) > 0, then rows and columns k and IPIV(k) were interchanged and D(k,k) is a 1-by-1 diagonal block. If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, then rows and columns k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k) is a 2-by-2 diagonal block. If UPLO = 'L' and IPIV(k) = IPIV(k+1) < 0, then rows and columns k+1 and -IPIV(k) were interchanged and D(k:k+1,k:k+1) is a 2-by-2 diagonal block. If FACT = 'N', then IPIV is an output argument and on exit contains details of the interchanges and the block structure of D, as determined by SSYTRF.``` [in] B ``` B is REAL array, dimension (LDB,NRHS) The N-by-NRHS right hand side matrix B.``` [in] LDB ``` LDB is INTEGER The leading dimension of the array B. LDB >= max(1,N).``` [out] X ``` X is REAL array, dimension (LDX,NRHS) If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X.``` [in] LDX ``` LDX is INTEGER The leading dimension of the array X. LDX >= max(1,N).``` [out] RCOND ``` RCOND is REAL The estimate of the reciprocal condition number of the matrix A. If RCOND is less than the machine precision (in particular, if RCOND = 0), the matrix is singular to working precision. This condition is indicated by a return code of INFO > 0.``` [out] FERR ``` FERR is REAL array, dimension (NRHS) The estimated forward error bound for each solution vector X(j) (the j-th column of the solution matrix X). If XTRUE is the true solution corresponding to X(j), FERR(j) is an estimated upper bound for the magnitude of the largest element in (X(j) - XTRUE) divided by the magnitude of the largest element in X(j). The estimate is as reliable as the estimate for RCOND, and is almost always a slight overestimate of the true error.``` [out] BERR ``` BERR is REAL array, dimension (NRHS) The componentwise relative backward error of each solution vector X(j) (i.e., the smallest relative change in any element of A or B that makes X(j) an exact solution).``` [out] WORK ``` WORK is REAL array, dimension (MAX(1,LWORK)) On exit, if INFO = 0, WORK(1) returns the optimal LWORK.``` [in] LWORK ``` LWORK is INTEGER The length of WORK. LWORK >= max(1,3*N), and for best performance, when FACT = 'N', LWORK >= max(1,3*N,N*NB), where NB is the optimal blocksize for SSYTRF. If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA.``` [out] IWORK ` IWORK is INTEGER array, dimension (N)` [out] INFO ``` INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value > 0: if INFO = i, and i is <= N: D(i,i) is exactly zero. The factorization has been completed but the factor D is exactly singular, so the solution and error bounds could not be computed. RCOND = 0 is returned. = N+1: D is nonsingular, but RCOND is less than machine precision, meaning that the matrix is singular to working precision. Nevertheless, the solution and error bounds are computed because there are a number of situations where the computed solution can be more accurate than the value of RCOND would suggest.```
Date
April 2012

Definition at line 286 of file ssysvx.f.

286 *
287 * -- LAPACK driver routine (version 3.4.1) --
288 * -- LAPACK is a software package provided by Univ. of Tennessee, --
289 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
290 * April 2012
291 *
292 * .. Scalar Arguments ..
293  CHARACTER fact, uplo
294  INTEGER info, lda, ldaf, ldb, ldx, lwork, n, nrhs
295  REAL rcond
296 * ..
297 * .. Array Arguments ..
298  INTEGER ipiv( * ), iwork( * )
299  REAL a( lda, * ), af( ldaf, * ), b( ldb, * ),
300  \$ berr( * ), ferr( * ), work( * ), x( ldx, * )
301 * ..
302 *
303 * =====================================================================
304 *
305 * .. Parameters ..
306  REAL zero
307  parameter ( zero = 0.0e+0 )
308 * ..
309 * .. Local Scalars ..
310  LOGICAL lquery, nofact
311  INTEGER lwkopt, nb
312  REAL anorm
313 * ..
314 * .. External Functions ..
315  LOGICAL lsame
316  INTEGER ilaenv
317  REAL slamch, slansy
318  EXTERNAL ilaenv, lsame, slamch, slansy
319 * ..
320 * .. External Subroutines ..
321  EXTERNAL slacpy, ssycon, ssyrfs, ssytrf, ssytrs, xerbla
322 * ..
323 * .. Intrinsic Functions ..
324  INTRINSIC max
325 * ..
326 * .. Executable Statements ..
327 *
328 * Test the input parameters.
329 *
330  info = 0
331  nofact = lsame( fact, 'N' )
332  lquery = ( lwork.EQ.-1 )
333  IF( .NOT.nofact .AND. .NOT.lsame( fact, 'F' ) ) THEN
334  info = -1
335  ELSE IF( .NOT.lsame( uplo, 'U' ) .AND. .NOT.lsame( uplo, 'L' ) )
336  \$ THEN
337  info = -2
338  ELSE IF( n.LT.0 ) THEN
339  info = -3
340  ELSE IF( nrhs.LT.0 ) THEN
341  info = -4
342  ELSE IF( lda.LT.max( 1, n ) ) THEN
343  info = -6
344  ELSE IF( ldaf.LT.max( 1, n ) ) THEN
345  info = -8
346  ELSE IF( ldb.LT.max( 1, n ) ) THEN
347  info = -11
348  ELSE IF( ldx.LT.max( 1, n ) ) THEN
349  info = -13
350  ELSE IF( lwork.LT.max( 1, 3*n ) .AND. .NOT.lquery ) THEN
351  info = -18
352  END IF
353 *
354  IF( info.EQ.0 ) THEN
355  lwkopt = max( 1, 3*n )
356  IF( nofact ) THEN
357  nb = ilaenv( 1, 'SSYTRF', uplo, n, -1, -1, -1 )
358  lwkopt = max( lwkopt, n*nb )
359  END IF
360  work( 1 ) = lwkopt
361  END IF
362 *
363  IF( info.NE.0 ) THEN
364  CALL xerbla( 'SSYSVX', -info )
365  RETURN
366  ELSE IF( lquery ) THEN
367  RETURN
368  END IF
369 *
370  IF( nofact ) THEN
371 *
372 * Compute the factorization A = U*D*U**T or A = L*D*L**T.
373 *
374  CALL slacpy( uplo, n, n, a, lda, af, ldaf )
375  CALL ssytrf( uplo, n, af, ldaf, ipiv, work, lwork, info )
376 *
377 * Return if INFO is non-zero.
378 *
379  IF( info.GT.0 )THEN
380  rcond = zero
381  RETURN
382  END IF
383  END IF
384 *
385 * Compute the norm of the matrix A.
386 *
387  anorm = slansy( 'I', uplo, n, a, lda, work )
388 *
389 * Compute the reciprocal of the condition number of A.
390 *
391  CALL ssycon( uplo, n, af, ldaf, ipiv, anorm, rcond, work, iwork,
392  \$ info )
393 *
394 * Compute the solution vectors X.
395 *
396  CALL slacpy( 'Full', n, nrhs, b, ldb, x, ldx )
397  CALL ssytrs( uplo, n, nrhs, af, ldaf, ipiv, x, ldx, info )
398 *
399 * Use iterative refinement to improve the computed solutions and
400 * compute error bounds and backward error estimates for them.
401 *
402  CALL ssyrfs( uplo, n, nrhs, a, lda, af, ldaf, ipiv, b, ldb, x,
403  \$ ldx, ferr, berr, work, iwork, info )
404 *
405 * Set INFO = N+1 if the matrix is singular to working precision.
406 *
407  IF( rcond.LT.slamch( 'Epsilon' ) )
408  \$ info = n + 1
409 *
410  work( 1 ) = lwkopt
411 *
412  RETURN
413 *
414 * End of SSYSVX
415 *
subroutine ssytrs(UPLO, N, NRHS, A, LDA, IPIV, B, LDB, INFO)
SSYTRS
Definition: ssytrs.f:122
subroutine ssytrf(UPLO, N, A, LDA, IPIV, WORK, LWORK, INFO)
SSYTRF
Definition: ssytrf.f:184
subroutine ssycon(UPLO, N, A, LDA, IPIV, ANORM, RCOND, WORK, IWORK, INFO)
SSYCON
Definition: ssycon.f:132
subroutine xerbla(SRNAME, INFO)
XERBLA
Definition: xerbla.f:62
subroutine slacpy(UPLO, M, N, A, LDA, B, LDB)
SLACPY copies all or part of one two-dimensional array to another.
Definition: slacpy.f:105
integer function ilaenv(ISPEC, NAME, OPTS, N1, N2, N3, N4)
Definition: tstiee.f:83
real function slamch(CMACH)
SLAMCH
Definition: slamch.f:69
subroutine ssyrfs(UPLO, N, NRHS, A, LDA, AF, LDAF, IPIV, B, LDB, X, LDX, FERR, BERR, WORK, IWORK, INFO)
SSYRFS
Definition: ssyrfs.f:193
logical function lsame(CA, CB)
LSAME
Definition: lsame.f:55
real function slansy(NORM, UPLO, N, A, LDA, WORK)
SLANSY returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a real symmetric matrix.
Definition: slansy.f:124

Here is the call graph for this function:

Here is the caller graph for this function: