LAPACK  3.6.1
LAPACK: Linear Algebra PACKage
subroutine cla_porfsx_extended ( integer  PREC_TYPE,
character  UPLO,
integer  N,
integer  NRHS,
complex, dimension( lda, * )  A,
integer  LDA,
complex, dimension( ldaf, * )  AF,
integer  LDAF,
logical  COLEQU,
real, dimension( * )  C,
complex, dimension( ldb, * )  B,
integer  LDB,
complex, dimension( ldy, * )  Y,
integer  LDY,
real, dimension( * )  BERR_OUT,
integer  N_NORMS,
real, dimension( nrhs, * )  ERR_BNDS_NORM,
real, dimension( nrhs, * )  ERR_BNDS_COMP,
complex, dimension( * )  RES,
real, dimension( * )  AYB,
complex, dimension( * )  DY,
complex, dimension( * )  Y_TAIL,
real  RCOND,
integer  ITHRESH,
real  RTHRESH,
real  DZ_UB,
logical  IGNORE_CWISE,
integer  INFO 
)

CLA_PORFSX_EXTENDED improves the computed solution to a system of linear equations for symmetric or Hermitian positive-definite matrices by performing extra-precise iterative refinement and provides error bounds and backward error estimates for the solution.

Download CLA_PORFSX_EXTENDED + dependencies [TGZ] [ZIP] [TXT]

Purpose:
 CLA_PORFSX_EXTENDED improves the computed solution to a system of
 linear equations by performing extra-precise iterative refinement
 and provides error bounds and backward error estimates for the solution.
 This subroutine is called by CPORFSX to perform iterative refinement.
 In addition to normwise error bound, the code provides maximum
 componentwise error bound if possible. See comments for ERR_BNDS_NORM
 and ERR_BNDS_COMP for details of the error bounds. Note that this
 subroutine is only resonsible for setting the second fields of
 ERR_BNDS_NORM and ERR_BNDS_COMP.
Parameters
[in]PREC_TYPE
          PREC_TYPE is INTEGER
     Specifies the intermediate precision to be used in refinement.
     The value is defined by ILAPREC(P) where P is a CHARACTER and
     P    = 'S':  Single
          = 'D':  Double
          = 'I':  Indigenous
          = 'X', 'E':  Extra
[in]UPLO
          UPLO is CHARACTER*1
       = 'U':  Upper triangle of A is stored;
       = 'L':  Lower triangle of A is stored.
[in]N
          N is INTEGER
     The number of linear equations, i.e., the order of the
     matrix A.  N >= 0.
[in]NRHS
          NRHS is INTEGER
     The number of right-hand-sides, i.e., the number of columns of the
     matrix B.
[in]A
          A is COMPLEX array, dimension (LDA,N)
     On entry, the N-by-N matrix A.
[in]LDA
          LDA is INTEGER
     The leading dimension of the array A.  LDA >= max(1,N).
[in]AF
          AF is COMPLEX array, dimension (LDAF,N)
     The triangular factor U or L from the Cholesky factorization
     A = U**T*U or A = L*L**T, as computed by CPOTRF.
[in]LDAF
          LDAF is INTEGER
     The leading dimension of the array AF.  LDAF >= max(1,N).
[in]COLEQU
          COLEQU is LOGICAL
     If .TRUE. then column equilibration was done to A before calling
     this routine. This is needed to compute the solution and error
     bounds correctly.
[in]C
          C is REAL array, dimension (N)
     The column scale factors for A. If COLEQU = .FALSE., C
     is not accessed. If C is input, each element of C should be a power
     of the radix to ensure a reliable solution and error estimates.
     Scaling by powers of the radix does not cause rounding errors unless
     the result underflows or overflows. Rounding errors during scaling
     lead to refining with a matrix that is not equivalent to the
     input matrix, producing error estimates that may not be
     reliable.
[in]B
          B is COMPLEX array, dimension (LDB,NRHS)
     The right-hand-side matrix B.
[in]LDB
          LDB is INTEGER
     The leading dimension of the array B.  LDB >= max(1,N).
[in,out]Y
          Y is COMPLEX array, dimension
                    (LDY,NRHS)
     On entry, the solution matrix X, as computed by CPOTRS.
     On exit, the improved solution matrix Y.
[in]LDY
          LDY is INTEGER
     The leading dimension of the array Y.  LDY >= max(1,N).
[out]BERR_OUT
          BERR_OUT is REAL array, dimension (NRHS)
     On exit, BERR_OUT(j) contains the componentwise relative backward
     error for right-hand-side j from the formula
         max(i) ( abs(RES(i)) / ( abs(op(A_s))*abs(Y) + abs(B_s) )(i) )
     where abs(Z) is the componentwise absolute value of the matrix
     or vector Z. This is computed by CLA_LIN_BERR.
[in]N_NORMS
          N_NORMS is INTEGER
     Determines which error bounds to return (see ERR_BNDS_NORM
     and ERR_BNDS_COMP).
     If N_NORMS >= 1 return normwise error bounds.
     If N_NORMS >= 2 return componentwise error bounds.
[in,out]ERR_BNDS_NORM
          ERR_BNDS_NORM is REAL array, dimension
                    (NRHS, N_ERR_BNDS)
     For each right-hand side, this array contains information about
     various error bounds and condition numbers corresponding to the
     normwise relative error, which is defined as follows:

     Normwise relative error in the ith solution vector:
             max_j (abs(XTRUE(j,i) - X(j,i)))
            ------------------------------
                  max_j abs(X(j,i))

     The array is indexed by the type of error information as described
     below. There currently are up to three pieces of information
     returned.

     The first index in ERR_BNDS_NORM(i,:) corresponds to the ith
     right-hand side.

     The second index in ERR_BNDS_NORM(:,err) contains the following
     three fields:
     err = 1 "Trust/don't trust" boolean. Trust the answer if the
              reciprocal condition number is less than the threshold
              sqrt(n) * slamch('Epsilon').

     err = 2 "Guaranteed" error bound: The estimated forward error,
              almost certainly within a factor of 10 of the true error
              so long as the next entry is greater than the threshold
              sqrt(n) * slamch('Epsilon'). This error bound should only
              be trusted if the previous boolean is true.

     err = 3  Reciprocal condition number: Estimated normwise
              reciprocal condition number.  Compared with the threshold
              sqrt(n) * slamch('Epsilon') to determine if the error
              estimate is "guaranteed". These reciprocal condition
              numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
              appropriately scaled matrix Z.
              Let Z = S*A, where S scales each row by a power of the
              radix so all absolute row sums of Z are approximately 1.

     This subroutine is only responsible for setting the second field
     above.
     See Lapack Working Note 165 for further details and extra
     cautions.
[in,out]ERR_BNDS_COMP
          ERR_BNDS_COMP is REAL array, dimension
                    (NRHS, N_ERR_BNDS)
     For each right-hand side, this array contains information about
     various error bounds and condition numbers corresponding to the
     componentwise relative error, which is defined as follows:

     Componentwise relative error in the ith solution vector:
                    abs(XTRUE(j,i) - X(j,i))
             max_j ----------------------
                         abs(X(j,i))

     The array is indexed by the right-hand side i (on which the
     componentwise relative error depends), and the type of error
     information as described below. There currently are up to three
     pieces of information returned for each right-hand side. If
     componentwise accuracy is not requested (PARAMS(3) = 0.0), then
     ERR_BNDS_COMP is not accessed.  If N_ERR_BNDS .LT. 3, then at most
     the first (:,N_ERR_BNDS) entries are returned.

     The first index in ERR_BNDS_COMP(i,:) corresponds to the ith
     right-hand side.

     The second index in ERR_BNDS_COMP(:,err) contains the following
     three fields:
     err = 1 "Trust/don't trust" boolean. Trust the answer if the
              reciprocal condition number is less than the threshold
              sqrt(n) * slamch('Epsilon').

     err = 2 "Guaranteed" error bound: The estimated forward error,
              almost certainly within a factor of 10 of the true error
              so long as the next entry is greater than the threshold
              sqrt(n) * slamch('Epsilon'). This error bound should only
              be trusted if the previous boolean is true.

     err = 3  Reciprocal condition number: Estimated componentwise
              reciprocal condition number.  Compared with the threshold
              sqrt(n) * slamch('Epsilon') to determine if the error
              estimate is "guaranteed". These reciprocal condition
              numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
              appropriately scaled matrix Z.
              Let Z = S*(A*diag(x)), where x is the solution for the
              current right-hand side and S scales each row of
              A*diag(x) by a power of the radix so all absolute row
              sums of Z are approximately 1.

     This subroutine is only responsible for setting the second field
     above.
     See Lapack Working Note 165 for further details and extra
     cautions.
[in]RES
          RES is COMPLEX array, dimension (N)
     Workspace to hold the intermediate residual.
[in]AYB
          AYB is REAL array, dimension (N)
     Workspace.
[in]DY
          DY is COMPLEX array, dimension (N)
     Workspace to hold the intermediate solution.
[in]Y_TAIL
          Y_TAIL is COMPLEX array, dimension (N)
     Workspace to hold the trailing bits of the intermediate solution.
[in]RCOND
          RCOND is REAL
     Reciprocal scaled condition number.  This is an estimate of the
     reciprocal Skeel condition number of the matrix A after
     equilibration (if done).  If this is less than the machine
     precision (in particular, if it is zero), the matrix is singular
     to working precision.  Note that the error may still be small even
     if this number is very small and the matrix appears ill-
     conditioned.
[in]ITHRESH
          ITHRESH is INTEGER
     The maximum number of residual computations allowed for
     refinement. The default is 10. For 'aggressive' set to 100 to
     permit convergence using approximate factorizations or
     factorizations other than LU. If the factorization uses a
     technique other than Gaussian elimination, the guarantees in
     ERR_BNDS_NORM and ERR_BNDS_COMP may no longer be trustworthy.
[in]RTHRESH
          RTHRESH is REAL
     Determines when to stop refinement if the error estimate stops
     decreasing. Refinement will stop when the next solution no longer
     satisfies norm(dx_{i+1}) < RTHRESH * norm(dx_i) where norm(Z) is
     the infinity norm of Z. RTHRESH satisfies 0 < RTHRESH <= 1. The
     default value is 0.5. For 'aggressive' set to 0.9 to permit
     convergence on extremely ill-conditioned matrices. See LAWN 165
     for more details.
[in]DZ_UB
          DZ_UB is REAL
     Determines when to start considering componentwise convergence.
     Componentwise convergence is only considered after each component
     of the solution Y is stable, which we definte as the relative
     change in each component being less than DZ_UB. The default value
     is 0.25, requiring the first bit to be stable. See LAWN 165 for
     more details.
[in]IGNORE_CWISE
          IGNORE_CWISE is LOGICAL
     If .TRUE. then ignore componentwise convergence. Default value
     is .FALSE..
[out]INFO
          INFO is INTEGER
       = 0:  Successful exit.
       < 0:  if INFO = -i, the ith argument to CPOTRS had an illegal
             value
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date
September 2012

Definition at line 392 of file cla_porfsx_extended.f.

392 *
393 * -- LAPACK computational routine (version 3.4.2) --
394 * -- LAPACK is a software package provided by Univ. of Tennessee, --
395 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
396 * September 2012
397 *
398 * .. Scalar Arguments ..
399  INTEGER info, lda, ldaf, ldb, ldy, n, nrhs, prec_type,
400  $ n_norms, ithresh
401  CHARACTER uplo
402  LOGICAL colequ, ignore_cwise
403  REAL rthresh, dz_ub
404 * ..
405 * .. Array Arguments ..
406  COMPLEX a( lda, * ), af( ldaf, * ), b( ldb, * ),
407  $ y( ldy, * ), res( * ), dy( * ), y_tail( * )
408  REAL c( * ), ayb( * ), rcond, berr_out( * ),
409  $ err_bnds_norm( nrhs, * ),
410  $ err_bnds_comp( nrhs, * )
411 * ..
412 *
413 * =====================================================================
414 *
415 * .. Local Scalars ..
416  INTEGER uplo2, cnt, i, j, x_state, z_state,
417  $ y_prec_state
418  REAL yk, dyk, ymin, normy, normx, normdx, dxrat,
419  $ dzrat, prevnormdx, prev_dz_z, dxratmax,
420  $ dzratmax, dx_x, dz_z, final_dx_x, final_dz_z,
421  $ eps, hugeval, incr_thresh
422  LOGICAL incr_prec
423  COMPLEX zdum
424 * ..
425 * .. Parameters ..
426  INTEGER unstable_state, working_state, conv_state,
427  $ noprog_state, base_residual, extra_residual,
428  $ extra_y
429  parameter ( unstable_state = 0, working_state = 1,
430  $ conv_state = 2, noprog_state = 3 )
431  parameter ( base_residual = 0, extra_residual = 1,
432  $ extra_y = 2 )
433  INTEGER final_nrm_err_i, final_cmp_err_i, berr_i
434  INTEGER rcond_i, nrm_rcond_i, nrm_err_i, cmp_rcond_i
435  INTEGER cmp_err_i, piv_growth_i
436  parameter ( final_nrm_err_i = 1, final_cmp_err_i = 2,
437  $ berr_i = 3 )
438  parameter ( rcond_i = 4, nrm_rcond_i = 5, nrm_err_i = 6 )
439  parameter ( cmp_rcond_i = 7, cmp_err_i = 8,
440  $ piv_growth_i = 9 )
441  INTEGER la_linrx_itref_i, la_linrx_ithresh_i,
442  $ la_linrx_cwise_i
443  parameter ( la_linrx_itref_i = 1,
444  $ la_linrx_ithresh_i = 2 )
445  parameter ( la_linrx_cwise_i = 3 )
446  INTEGER la_linrx_trust_i, la_linrx_err_i,
447  $ la_linrx_rcond_i
448  parameter ( la_linrx_trust_i = 1, la_linrx_err_i = 2 )
449  parameter ( la_linrx_rcond_i = 3 )
450 * ..
451 * .. External Functions ..
452  LOGICAL lsame
453  EXTERNAL ilauplo
454  INTEGER ilauplo
455 * ..
456 * .. External Subroutines ..
457  EXTERNAL caxpy, ccopy, cpotrs, chemv, blas_chemv_x,
458  $ blas_chemv2_x, cla_heamv, cla_wwaddw,
460  REAL slamch
461 * ..
462 * .. Intrinsic Functions ..
463  INTRINSIC abs, REAL, aimag, max, min
464 * ..
465 * .. Statement Functions ..
466  REAL cabs1
467 * ..
468 * .. Statement Function Definitions ..
469  cabs1( zdum ) = abs( REAL( ZDUM ) ) + abs( aimag( zdum ) )
470 * ..
471 * .. Executable Statements ..
472 *
473  IF (info.NE.0) RETURN
474  eps = slamch( 'Epsilon' )
475  hugeval = slamch( 'Overflow' )
476 * Force HUGEVAL to Inf
477  hugeval = hugeval * hugeval
478 * Using HUGEVAL may lead to spurious underflows.
479  incr_thresh = REAL(N) * eps
480 
481  IF (lsame(uplo, 'L')) THEN
482  uplo2 = ilauplo( 'L' )
483  ELSE
484  uplo2 = ilauplo( 'U' )
485  ENDIF
486 
487  DO j = 1, nrhs
488  y_prec_state = extra_residual
489  IF (y_prec_state .EQ. extra_y) THEN
490  DO i = 1, n
491  y_tail( i ) = 0.0
492  END DO
493  END IF
494 
495  dxrat = 0.0
496  dxratmax = 0.0
497  dzrat = 0.0
498  dzratmax = 0.0
499  final_dx_x = hugeval
500  final_dz_z = hugeval
501  prevnormdx = hugeval
502  prev_dz_z = hugeval
503  dz_z = hugeval
504  dx_x = hugeval
505 
506  x_state = working_state
507  z_state = unstable_state
508  incr_prec = .false.
509 
510  DO cnt = 1, ithresh
511 *
512 * Compute residual RES = B_s - op(A_s) * Y,
513 * op(A) = A, A**T, or A**H depending on TRANS (and type).
514 *
515  CALL ccopy( n, b( 1, j ), 1, res, 1 )
516  IF (y_prec_state .EQ. base_residual) THEN
517  CALL chemv(uplo, n, cmplx(-1.0), a, lda, y(1,j), 1,
518  $ cmplx(1.0), res, 1)
519  ELSE IF (y_prec_state .EQ. extra_residual) THEN
520  CALL blas_chemv_x(uplo2, n, cmplx(-1.0), a, lda,
521  $ y( 1, j ), 1, cmplx(1.0), res, 1, prec_type)
522  ELSE
523  CALL blas_chemv2_x(uplo2, n, cmplx(-1.0), a, lda,
524  $ y(1, j), y_tail, 1, cmplx(1.0), res, 1, prec_type)
525  END IF
526 
527 ! XXX: RES is no longer needed.
528  CALL ccopy( n, res, 1, dy, 1 )
529  CALL cpotrs( uplo, n, 1, af, ldaf, dy, n, info)
530 *
531 * Calculate relative changes DX_X, DZ_Z and ratios DXRAT, DZRAT.
532 *
533  normx = 0.0
534  normy = 0.0
535  normdx = 0.0
536  dz_z = 0.0
537  ymin = hugeval
538 
539  DO i = 1, n
540  yk = cabs1(y(i, j))
541  dyk = cabs1(dy(i))
542 
543  IF (yk .NE. 0.0) THEN
544  dz_z = max( dz_z, dyk / yk )
545  ELSE IF (dyk .NE. 0.0) THEN
546  dz_z = hugeval
547  END IF
548 
549  ymin = min( ymin, yk )
550 
551  normy = max( normy, yk )
552 
553  IF ( colequ ) THEN
554  normx = max(normx, yk * c(i))
555  normdx = max(normdx, dyk * c(i))
556  ELSE
557  normx = normy
558  normdx = max(normdx, dyk)
559  END IF
560  END DO
561 
562  IF (normx .NE. 0.0) THEN
563  dx_x = normdx / normx
564  ELSE IF (normdx .EQ. 0.0) THEN
565  dx_x = 0.0
566  ELSE
567  dx_x = hugeval
568  END IF
569 
570  dxrat = normdx / prevnormdx
571  dzrat = dz_z / prev_dz_z
572 *
573 * Check termination criteria.
574 *
575  IF (ymin*rcond .LT. incr_thresh*normy
576  $ .AND. y_prec_state .LT. extra_y)
577  $ incr_prec = .true.
578 
579  IF (x_state .EQ. noprog_state .AND. dxrat .LE. rthresh)
580  $ x_state = working_state
581  IF (x_state .EQ. working_state) THEN
582  IF (dx_x .LE. eps) THEN
583  x_state = conv_state
584  ELSE IF (dxrat .GT. rthresh) THEN
585  IF (y_prec_state .NE. extra_y) THEN
586  incr_prec = .true.
587  ELSE
588  x_state = noprog_state
589  END IF
590  ELSE
591  IF (dxrat .GT. dxratmax) dxratmax = dxrat
592  END IF
593  IF (x_state .GT. working_state) final_dx_x = dx_x
594  END IF
595 
596  IF (z_state .EQ. unstable_state .AND. dz_z .LE. dz_ub)
597  $ z_state = working_state
598  IF (z_state .EQ. noprog_state .AND. dzrat .LE. rthresh)
599  $ z_state = working_state
600  IF (z_state .EQ. working_state) THEN
601  IF (dz_z .LE. eps) THEN
602  z_state = conv_state
603  ELSE IF (dz_z .GT. dz_ub) THEN
604  z_state = unstable_state
605  dzratmax = 0.0
606  final_dz_z = hugeval
607  ELSE IF (dzrat .GT. rthresh) THEN
608  IF (y_prec_state .NE. extra_y) THEN
609  incr_prec = .true.
610  ELSE
611  z_state = noprog_state
612  END IF
613  ELSE
614  IF (dzrat .GT. dzratmax) dzratmax = dzrat
615  END IF
616  IF (z_state .GT. working_state) final_dz_z = dz_z
617  END IF
618 
619  IF ( x_state.NE.working_state.AND.
620  $ (ignore_cwise.OR.z_state.NE.working_state) )
621  $ GOTO 666
622 
623  IF (incr_prec) THEN
624  incr_prec = .false.
625  y_prec_state = y_prec_state + 1
626  DO i = 1, n
627  y_tail( i ) = 0.0
628  END DO
629  END IF
630 
631  prevnormdx = normdx
632  prev_dz_z = dz_z
633 *
634 * Update soluton.
635 *
636  IF (y_prec_state .LT. extra_y) THEN
637  CALL caxpy( n, cmplx(1.0), dy, 1, y(1,j), 1 )
638  ELSE
639  CALL cla_wwaddw(n, y(1,j), y_tail, dy)
640  END IF
641 
642  END DO
643 * Target of "IF (Z_STOP .AND. X_STOP)". Sun's f77 won't EXIT.
644  666 CONTINUE
645 *
646 * Set final_* when cnt hits ithresh.
647 *
648  IF (x_state .EQ. working_state) final_dx_x = dx_x
649  IF (z_state .EQ. working_state) final_dz_z = dz_z
650 *
651 * Compute error bounds.
652 *
653  IF (n_norms .GE. 1) THEN
654  err_bnds_norm( j, la_linrx_err_i ) =
655  $ final_dx_x / (1 - dxratmax)
656  END IF
657  IF (n_norms .GE. 2) THEN
658  err_bnds_comp( j, la_linrx_err_i ) =
659  $ final_dz_z / (1 - dzratmax)
660  END IF
661 *
662 * Compute componentwise relative backward error from formula
663 * max(i) ( abs(R(i)) / ( abs(op(A_s))*abs(Y) + abs(B_s) )(i) )
664 * where abs(Z) is the componentwise absolute value of the matrix
665 * or vector Z.
666 *
667 * Compute residual RES = B_s - op(A_s) * Y,
668 * op(A) = A, A**T, or A**H depending on TRANS (and type).
669 *
670  CALL ccopy( n, b( 1, j ), 1, res, 1 )
671  CALL chemv(uplo, n, cmplx(-1.0), a, lda, y(1,j), 1, cmplx(1.0),
672  $ res, 1)
673 
674  DO i = 1, n
675  ayb( i ) = cabs1( b( i, j ) )
676  END DO
677 *
678 * Compute abs(op(A_s))*abs(Y) + abs(B_s).
679 *
680  CALL cla_heamv (uplo2, n, 1.0,
681  $ a, lda, y(1, j), 1, 1.0, ayb, 1)
682 
683  CALL cla_lin_berr (n, n, 1, res, ayb, berr_out(j))
684 *
685 * End of loop for each RHS.
686 *
687  END DO
688 *
689  RETURN
subroutine cla_heamv(UPLO, N, ALPHA, A, LDA, X, INCX, BETA, Y, INCY)
CLA_HEAMV computes a matrix-vector product using a Hermitian indefinite matrix to calculate error bou...
Definition: cla_heamv.f:180
subroutine cpotrs(UPLO, N, NRHS, A, LDA, B, LDB, INFO)
CPOTRS
Definition: cpotrs.f:112
integer function ilauplo(UPLO)
ILAUPLO
Definition: ilauplo.f:60
subroutine chemv(UPLO, N, ALPHA, A, LDA, X, INCX, BETA, Y, INCY)
CHEMV
Definition: chemv.f:156
subroutine cla_lin_berr(N, NZ, NRHS, RES, AYB, BERR)
CLA_LIN_BERR computes a component-wise relative backward error.
Definition: cla_lin_berr.f:103
subroutine ccopy(N, CX, INCX, CY, INCY)
CCOPY
Definition: ccopy.f:52
subroutine cla_wwaddw(N, X, Y, W)
CLA_WWADDW adds a vector into a doubled-single vector.
Definition: cla_wwaddw.f:83
real function slamch(CMACH)
SLAMCH
Definition: slamch.f:69
subroutine caxpy(N, CA, CX, INCX, CY, INCY)
CAXPY
Definition: caxpy.f:53
logical function lsame(CA, CB)
LSAME
Definition: lsame.f:55

Here is the call graph for this function:

Here is the caller graph for this function: