LAPACK  3.6.1 LAPACK: Linear Algebra PACKage
 subroutine zlaror ( character SIDE, character INIT, integer M, integer N, complex*16, dimension( lda, * ) A, integer LDA, integer, dimension( 4 ) ISEED, complex*16, dimension( * ) X, integer INFO )

ZLAROR

Purpose:
```    ZLAROR pre- or post-multiplies an M by N matrix A by a random
unitary matrix U, overwriting A. A may optionally be
initialized to the identity matrix before multiplying by U.
U is generated using the method of G.W. Stewart
( SIAM J. Numer. Anal. 17, 1980, pp. 403-409 ).
(BLAS-2 version)```
Parameters
 [in] SIDE ``` SIDE is CHARACTER*1 SIDE specifies whether A is multiplied on the left or right by U. SIDE = 'L' Multiply A on the left (premultiply) by U SIDE = 'R' Multiply A on the right (postmultiply) by UC> SIDE = 'C' Multiply A on the left by U and the right by UC> SIDE = 'T' Multiply A on the left by U and the right by U' Not modified.``` [in] INIT ``` INIT is CHARACTER*1 INIT specifies whether or not A should be initialized to the identity matrix. INIT = 'I' Initialize A to (a section of) the identity matrix before applying U. INIT = 'N' No initialization. Apply U to the input matrix A. INIT = 'I' may be used to generate square (i.e., unitary) or rectangular orthogonal matrices (orthogonality being in the sense of ZDOTC): For square matrices, M=N, and SIDE many be either 'L' or 'R'; the rows will be orthogonal to each other, as will the columns. For rectangular matrices where M < N, SIDE = 'R' will produce a dense matrix whose rows will be orthogonal and whose columns will not, while SIDE = 'L' will produce a matrix whose rows will be orthogonal, and whose first M columns will be orthogonal, the remaining columns being zero. For matrices where M > N, just use the previous explanation, interchanging 'L' and 'R' and "rows" and "columns". Not modified.``` [in] M ``` M is INTEGER Number of rows of A. Not modified.``` [in] N ``` N is INTEGER Number of columns of A. Not modified.``` [in,out] A ``` A is COMPLEX*16 array, dimension ( LDA, N ) Input and output array. Overwritten by U A ( if SIDE = 'L' ) or by A U ( if SIDE = 'R' ) or by U A U* ( if SIDE = 'C') or by U A U' ( if SIDE = 'T') on exit.``` [in] LDA ``` LDA is INTEGER Leading dimension of A. Must be at least MAX ( 1, M ). Not modified.``` [in,out] ISEED ``` ISEED is INTEGER array, dimension ( 4 ) On entry ISEED specifies the seed of the random number generator. The array elements should be between 0 and 4095; if not they will be reduced mod 4096. Also, ISEED(4) must be odd. The random number generator uses a linear congruential sequence limited to small integers, and so should produce machine independent random numbers. The values of ISEED are changed on exit, and can be used in the next call to ZLAROR to continue the same random number sequence. Modified.``` [out] X ``` X is COMPLEX*16 array, dimension ( 3*MAX( M, N ) ) Workspace. Of length: 2*M + N if SIDE = 'L', 2*N + M if SIDE = 'R', 3*N if SIDE = 'C' or 'T'. Modified.``` [out] INFO ``` INFO is INTEGER An error flag. It is set to: 0 if no error. 1 if ZLARND returned a bad random number (installation problem) -1 if SIDE is not L, R, C, or T. -3 if M is negative. -4 if N is negative or if SIDE is C or T and N is not equal to M. -6 if LDA is less than M.```
Date
November 2011

Definition at line 160 of file zlaror.f.

160 *
161 * -- LAPACK auxiliary routine (version 3.4.0) --
162 * -- LAPACK is a software package provided by Univ. of Tennessee, --
163 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
164 * November 2011
165 *
166 * .. Scalar Arguments ..
167  CHARACTER init, side
168  INTEGER info, lda, m, n
169 * ..
170 * .. Array Arguments ..
171  INTEGER iseed( 4 )
172  COMPLEX*16 a( lda, * ), x( * )
173 * ..
174 *
175 * =====================================================================
176 *
177 * .. Parameters ..
178  DOUBLE PRECISION zero, one, toosml
179  parameter ( zero = 0.0d+0, one = 1.0d+0,
180  \$ toosml = 1.0d-20 )
181  COMPLEX*16 czero, cone
182  parameter ( czero = ( 0.0d+0, 0.0d+0 ),
183  \$ cone = ( 1.0d+0, 0.0d+0 ) )
184 * ..
185 * .. Local Scalars ..
186  INTEGER irow, itype, ixfrm, j, jcol, kbeg, nxfrm
187  DOUBLE PRECISION factor, xabs, xnorm
188  COMPLEX*16 csign, xnorms
189 * ..
190 * .. External Functions ..
191  LOGICAL lsame
192  DOUBLE PRECISION dznrm2
193  COMPLEX*16 zlarnd
194  EXTERNAL lsame, dznrm2, zlarnd
195 * ..
196 * .. External Subroutines ..
197  EXTERNAL xerbla, zgemv, zgerc, zlacgv, zlaset, zscal
198 * ..
199 * .. Intrinsic Functions ..
200  INTRINSIC abs, dcmplx, dconjg
201 * ..
202 * .. Executable Statements ..
203 *
204  info = 0
205  IF( n.EQ.0 .OR. m.EQ.0 )
206  \$ RETURN
207 *
208  itype = 0
209  IF( lsame( side, 'L' ) ) THEN
210  itype = 1
211  ELSE IF( lsame( side, 'R' ) ) THEN
212  itype = 2
213  ELSE IF( lsame( side, 'C' ) ) THEN
214  itype = 3
215  ELSE IF( lsame( side, 'T' ) ) THEN
216  itype = 4
217  END IF
218 *
219 * Check for argument errors.
220 *
221  IF( itype.EQ.0 ) THEN
222  info = -1
223  ELSE IF( m.LT.0 ) THEN
224  info = -3
225  ELSE IF( n.LT.0 .OR. ( itype.EQ.3 .AND. n.NE.m ) ) THEN
226  info = -4
227  ELSE IF( lda.LT.m ) THEN
228  info = -6
229  END IF
230  IF( info.NE.0 ) THEN
231  CALL xerbla( 'ZLAROR', -info )
232  RETURN
233  END IF
234 *
235  IF( itype.EQ.1 ) THEN
236  nxfrm = m
237  ELSE
238  nxfrm = n
239  END IF
240 *
241 * Initialize A to the identity matrix if desired
242 *
243  IF( lsame( init, 'I' ) )
244  \$ CALL zlaset( 'Full', m, n, czero, cone, a, lda )
245 *
246 * If no rotation possible, still multiply by
247 * a random complex number from the circle |x| = 1
248 *
249 * 2) Compute Rotation by computing Householder
250 * Transformations H(2), H(3), ..., H(n). Note that the
251 * order in which they are computed is irrelevant.
252 *
253  DO 10 j = 1, nxfrm
254  x( j ) = czero
255  10 CONTINUE
256 *
257  DO 30 ixfrm = 2, nxfrm
258  kbeg = nxfrm - ixfrm + 1
259 *
260 * Generate independent normal( 0, 1 ) random numbers
261 *
262  DO 20 j = kbeg, nxfrm
263  x( j ) = zlarnd( 3, iseed )
264  20 CONTINUE
265 *
266 * Generate a Householder transformation from the random vector X
267 *
268  xnorm = dznrm2( ixfrm, x( kbeg ), 1 )
269  xabs = abs( x( kbeg ) )
270  IF( xabs.NE.czero ) THEN
271  csign = x( kbeg ) / xabs
272  ELSE
273  csign = cone
274  END IF
275  xnorms = csign*xnorm
276  x( nxfrm+kbeg ) = -csign
277  factor = xnorm*( xnorm+xabs )
278  IF( abs( factor ).LT.toosml ) THEN
279  info = 1
280  CALL xerbla( 'ZLAROR', -info )
281  RETURN
282  ELSE
283  factor = one / factor
284  END IF
285  x( kbeg ) = x( kbeg ) + xnorms
286 *
287 * Apply Householder transformation to A
288 *
289  IF( itype.EQ.1 .OR. itype.EQ.3 .OR. itype.EQ.4 ) THEN
290 *
291 * Apply H(k) on the left of A
292 *
293  CALL zgemv( 'C', ixfrm, n, cone, a( kbeg, 1 ), lda,
294  \$ x( kbeg ), 1, czero, x( 2*nxfrm+1 ), 1 )
295  CALL zgerc( ixfrm, n, -dcmplx( factor ), x( kbeg ), 1,
296  \$ x( 2*nxfrm+1 ), 1, a( kbeg, 1 ), lda )
297 *
298  END IF
299 *
300  IF( itype.GE.2 .AND. itype.LE.4 ) THEN
301 *
302 * Apply H(k)* (or H(k)') on the right of A
303 *
304  IF( itype.EQ.4 ) THEN
305  CALL zlacgv( ixfrm, x( kbeg ), 1 )
306  END IF
307 *
308  CALL zgemv( 'N', m, ixfrm, cone, a( 1, kbeg ), lda,
309  \$ x( kbeg ), 1, czero, x( 2*nxfrm+1 ), 1 )
310  CALL zgerc( m, ixfrm, -dcmplx( factor ), x( 2*nxfrm+1 ), 1,
311  \$ x( kbeg ), 1, a( 1, kbeg ), lda )
312 *
313  END IF
314  30 CONTINUE
315 *
316  x( 1 ) = zlarnd( 3, iseed )
317  xabs = abs( x( 1 ) )
318  IF( xabs.NE.zero ) THEN
319  csign = x( 1 ) / xabs
320  ELSE
321  csign = cone
322  END IF
323  x( 2*nxfrm ) = csign
324 *
325 * Scale the matrix A by D.
326 *
327  IF( itype.EQ.1 .OR. itype.EQ.3 .OR. itype.EQ.4 ) THEN
328  DO 40 irow = 1, m
329  CALL zscal( n, dconjg( x( nxfrm+irow ) ), a( irow, 1 ),
330  \$ lda )
331  40 CONTINUE
332  END IF
333 *
334  IF( itype.EQ.2 .OR. itype.EQ.3 ) THEN
335  DO 50 jcol = 1, n
336  CALL zscal( m, x( nxfrm+jcol ), a( 1, jcol ), 1 )
337  50 CONTINUE
338  END IF
339 *
340  IF( itype.EQ.4 ) THEN
341  DO 60 jcol = 1, n
342  CALL zscal( m, dconjg( x( nxfrm+jcol ) ), a( 1, jcol ), 1 )
343  60 CONTINUE
344  END IF
345  RETURN
346 *
347 * End of ZLAROR
348 *
subroutine zgemv(TRANS, M, N, ALPHA, A, LDA, X, INCX, BETA, Y, INCY)
ZGEMV
Definition: zgemv.f:160
subroutine zgerc(M, N, ALPHA, X, INCX, Y, INCY, A, LDA)
ZGERC
Definition: zgerc.f:132
subroutine zlaset(UPLO, M, N, ALPHA, BETA, A, LDA)
ZLASET initializes the off-diagonal elements and the diagonal elements of a matrix to given values...
Definition: zlaset.f:108
subroutine xerbla(SRNAME, INFO)
XERBLA
Definition: xerbla.f:62
double precision function dznrm2(N, X, INCX)
DZNRM2
Definition: dznrm2.f:56
logical function lsame(CA, CB)
LSAME
Definition: lsame.f:55
complex *16 function zlarnd(IDIST, ISEED)
ZLARND
Definition: zlarnd.f:77
subroutine zscal(N, ZA, ZX, INCX)
ZSCAL
Definition: zscal.f:54
subroutine zlacgv(N, X, INCX)
ZLACGV conjugates a complex vector.
Definition: zlacgv.f:76

Here is the call graph for this function:

Here is the caller graph for this function: