 LAPACK  3.6.1 LAPACK: Linear Algebra PACKage
 subroutine dlaqsb ( character UPLO, integer N, integer KD, double precision, dimension( ldab, * ) AB, integer LDAB, double precision, dimension( * ) S, double precision SCOND, double precision AMAX, character EQUED )

DLAQSB scales a symmetric/Hermitian band matrix, using scaling factors computed by spbequ.

Purpose:
``` DLAQSB equilibrates a symmetric band matrix A using the scaling
factors in the vector S.```
Parameters
 [in] UPLO ``` UPLO is CHARACTER*1 Specifies whether the upper or lower triangular part of the symmetric matrix A is stored. = 'U': Upper triangular = 'L': Lower triangular``` [in] N ``` N is INTEGER The order of the matrix A. N >= 0.``` [in] KD ``` KD is INTEGER The number of super-diagonals of the matrix A if UPLO = 'U', or the number of sub-diagonals if UPLO = 'L'. KD >= 0.``` [in,out] AB ``` AB is DOUBLE PRECISION array, dimension (LDAB,N) On entry, the upper or lower triangle of the symmetric band matrix A, stored in the first KD+1 rows of the array. The j-th column of A is stored in the j-th column of the array AB as follows: if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j; if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd). On exit, if INFO = 0, the triangular factor U or L from the Cholesky factorization A = U**T*U or A = L*L**T of the band matrix A, in the same storage format as A.``` [in] LDAB ``` LDAB is INTEGER The leading dimension of the array AB. LDAB >= KD+1.``` [in] S ``` S is DOUBLE PRECISION array, dimension (N) The scale factors for A.``` [in] SCOND ``` SCOND is DOUBLE PRECISION Ratio of the smallest S(i) to the largest S(i).``` [in] AMAX ``` AMAX is DOUBLE PRECISION Absolute value of largest matrix entry.``` [out] EQUED ``` EQUED is CHARACTER*1 Specifies whether or not equilibration was done. = 'N': No equilibration. = 'Y': Equilibration was done, i.e., A has been replaced by diag(S) * A * diag(S).```
Internal Parameters:
```  THRESH is a threshold value used to decide if scaling should be done
based on the ratio of the scaling factors.  If SCOND < THRESH,
scaling is done.

LARGE and SMALL are threshold values used to decide if scaling should
be done based on the absolute size of the largest matrix element.
If AMAX > LARGE or AMAX < SMALL, scaling is done.```
Date
September 2012

Definition at line 142 of file dlaqsb.f.

142 *
143 * -- LAPACK auxiliary routine (version 3.4.2) --
144 * -- LAPACK is a software package provided by Univ. of Tennessee, --
145 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
146 * September 2012
147 *
148 * .. Scalar Arguments ..
149  CHARACTER equed, uplo
150  INTEGER kd, ldab, n
151  DOUBLE PRECISION amax, scond
152 * ..
153 * .. Array Arguments ..
154  DOUBLE PRECISION ab( ldab, * ), s( * )
155 * ..
156 *
157 * =====================================================================
158 *
159 * .. Parameters ..
160  DOUBLE PRECISION one, thresh
161  parameter ( one = 1.0d+0, thresh = 0.1d+0 )
162 * ..
163 * .. Local Scalars ..
164  INTEGER i, j
165  DOUBLE PRECISION cj, large, small
166 * ..
167 * .. External Functions ..
168  LOGICAL lsame
169  DOUBLE PRECISION dlamch
170  EXTERNAL lsame, dlamch
171 * ..
172 * .. Intrinsic Functions ..
173  INTRINSIC max, min
174 * ..
175 * .. Executable Statements ..
176 *
177 * Quick return if possible
178 *
179  IF( n.LE.0 ) THEN
180  equed = 'N'
181  RETURN
182  END IF
183 *
184 * Initialize LARGE and SMALL.
185 *
186  small = dlamch( 'Safe minimum' ) / dlamch( 'Precision' )
187  large = one / small
188 *
189  IF( scond.GE.thresh .AND. amax.GE.small .AND. amax.LE.large ) THEN
190 *
191 * No equilibration
192 *
193  equed = 'N'
194  ELSE
195 *
196 * Replace A by diag(S) * A * diag(S).
197 *
198  IF( lsame( uplo, 'U' ) ) THEN
199 *
200 * Upper triangle of A is stored in band format.
201 *
202  DO 20 j = 1, n
203  cj = s( j )
204  DO 10 i = max( 1, j-kd ), j
205  ab( kd+1+i-j, j ) = cj*s( i )*ab( kd+1+i-j, j )
206  10 CONTINUE
207  20 CONTINUE
208  ELSE
209 *
210 * Lower triangle of A is stored.
211 *
212  DO 40 j = 1, n
213  cj = s( j )
214  DO 30 i = j, min( n, j+kd )
215  ab( 1+i-j, j ) = cj*s( i )*ab( 1+i-j, j )
216  30 CONTINUE
217  40 CONTINUE
218  END IF
219  equed = 'Y'
220  END IF
221 *
222  RETURN
223 *
224 * End of DLAQSB
225 *
double precision function dlamch(CMACH)
DLAMCH
Definition: dlamch.f:65
logical function lsame(CA, CB)
LSAME
Definition: lsame.f:55

Here is the caller graph for this function: