 LAPACK  3.6.1 LAPACK: Linear Algebra PACKage
 subroutine sorbdb ( character TRANS, character SIGNS, integer M, integer P, integer Q, real, dimension( ldx11, * ) X11, integer LDX11, real, dimension( ldx12, * ) X12, integer LDX12, real, dimension( ldx21, * ) X21, integer LDX21, real, dimension( ldx22, * ) X22, integer LDX22, real, dimension( * ) THETA, real, dimension( * ) PHI, real, dimension( * ) TAUP1, real, dimension( * ) TAUP2, real, dimension( * ) TAUQ1, real, dimension( * ) TAUQ2, real, dimension( * ) WORK, integer LWORK, integer INFO )

SORBDB

Purpose:
``` SORBDB simultaneously bidiagonalizes the blocks of an M-by-M
partitioned orthogonal matrix X:

[ B11 | B12 0  0 ]
[ X11 | X12 ]   [ P1 |    ] [  0  |  0 -I  0 ] [ Q1 |    ]**T
X = [-----------] = [---------] [----------------] [---------]   .
[ X21 | X22 ]   [    | P2 ] [ B21 | B22 0  0 ] [    | Q2 ]
[  0  |  0  0  I ]

X11 is P-by-Q. Q must be no larger than P, M-P, or M-Q. (If this is
not the case, then X must be transposed and/or permuted. This can be
done in constant time using the TRANS and SIGNS options. See SORCSD
for details.)

The orthogonal matrices P1, P2, Q1, and Q2 are P-by-P, (M-P)-by-
(M-P), Q-by-Q, and (M-Q)-by-(M-Q), respectively. They are
represented implicitly by Householder vectors.

B11, B12, B21, and B22 are Q-by-Q bidiagonal matrices represented
implicitly by angles THETA, PHI.```
Parameters
 [in] TRANS ``` TRANS is CHARACTER = 'T': X, U1, U2, V1T, and V2T are stored in row-major order; otherwise: X, U1, U2, V1T, and V2T are stored in column- major order.``` [in] SIGNS ``` SIGNS is CHARACTER = 'O': The lower-left block is made nonpositive (the "other" convention); otherwise: The upper-right block is made nonpositive (the "default" convention).``` [in] M ``` M is INTEGER The number of rows and columns in X.``` [in] P ``` P is INTEGER The number of rows in X11 and X12. 0 <= P <= M.``` [in] Q ``` Q is INTEGER The number of columns in X11 and X21. 0 <= Q <= MIN(P,M-P,M-Q).``` [in,out] X11 ``` X11 is REAL array, dimension (LDX11,Q) On entry, the top-left block of the orthogonal matrix to be reduced. On exit, the form depends on TRANS: If TRANS = 'N', then the columns of tril(X11) specify reflectors for P1, the rows of triu(X11,1) specify reflectors for Q1; else TRANS = 'T', and the rows of triu(X11) specify reflectors for P1, the columns of tril(X11,-1) specify reflectors for Q1.``` [in] LDX11 ``` LDX11 is INTEGER The leading dimension of X11. If TRANS = 'N', then LDX11 >= P; else LDX11 >= Q.``` [in,out] X12 ``` X12 is REAL array, dimension (LDX12,M-Q) On entry, the top-right block of the orthogonal matrix to be reduced. On exit, the form depends on TRANS: If TRANS = 'N', then the rows of triu(X12) specify the first P reflectors for Q2; else TRANS = 'T', and the columns of tril(X12) specify the first P reflectors for Q2.``` [in] LDX12 ``` LDX12 is INTEGER The leading dimension of X12. If TRANS = 'N', then LDX12 >= P; else LDX11 >= M-Q.``` [in,out] X21 ``` X21 is REAL array, dimension (LDX21,Q) On entry, the bottom-left block of the orthogonal matrix to be reduced. On exit, the form depends on TRANS: If TRANS = 'N', then the columns of tril(X21) specify reflectors for P2; else TRANS = 'T', and the rows of triu(X21) specify reflectors for P2.``` [in] LDX21 ``` LDX21 is INTEGER The leading dimension of X21. If TRANS = 'N', then LDX21 >= M-P; else LDX21 >= Q.``` [in,out] X22 ``` X22 is REAL array, dimension (LDX22,M-Q) On entry, the bottom-right block of the orthogonal matrix to be reduced. On exit, the form depends on TRANS: If TRANS = 'N', then the rows of triu(X22(Q+1:M-P,P+1:M-Q)) specify the last M-P-Q reflectors for Q2, else TRANS = 'T', and the columns of tril(X22(P+1:M-Q,Q+1:M-P)) specify the last M-P-Q reflectors for P2.``` [in] LDX22 ``` LDX22 is INTEGER The leading dimension of X22. If TRANS = 'N', then LDX22 >= M-P; else LDX22 >= M-Q.``` [out] THETA ``` THETA is REAL array, dimension (Q) The entries of the bidiagonal blocks B11, B12, B21, B22 can be computed from the angles THETA and PHI. See Further Details.``` [out] PHI ``` PHI is REAL array, dimension (Q-1) The entries of the bidiagonal blocks B11, B12, B21, B22 can be computed from the angles THETA and PHI. See Further Details.``` [out] TAUP1 ``` TAUP1 is REAL array, dimension (P) The scalar factors of the elementary reflectors that define P1.``` [out] TAUP2 ``` TAUP2 is REAL array, dimension (M-P) The scalar factors of the elementary reflectors that define P2.``` [out] TAUQ1 ``` TAUQ1 is REAL array, dimension (Q) The scalar factors of the elementary reflectors that define Q1.``` [out] TAUQ2 ``` TAUQ2 is REAL array, dimension (M-Q) The scalar factors of the elementary reflectors that define Q2.``` [out] WORK ` WORK is REAL array, dimension (LWORK)` [in] LWORK ``` LWORK is INTEGER The dimension of the array WORK. LWORK >= M-Q. If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA.``` [out] INFO ``` INFO is INTEGER = 0: successful exit. < 0: if INFO = -i, the i-th argument had an illegal value.```
Date
November 2015
Further Details:
```  The bidiagonal blocks B11, B12, B21, and B22 are represented
implicitly by angles THETA(1), ..., THETA(Q) and PHI(1), ...,
PHI(Q-1). B11 and B21 are upper bidiagonal, while B21 and B22 are
lower bidiagonal. Every entry in each bidiagonal band is a product
of a sine or cosine of a THETA with a sine or cosine of a PHI. See
 or SORCSD for details.

P1, P2, Q1, and Q2 are represented as products of elementary
reflectors. See SORCSD for details on generating P1, P2, Q1, and Q2
using SORGQR and SORGLQ.```
References:
 Brian D. Sutton. Computing the complete CS decomposition. Numer. Algorithms, 50(1):33-65, 2009.

Definition at line 289 of file sorbdb.f.

289 *
290 * -- LAPACK computational routine (version 3.6.0) --
291 * -- LAPACK is a software package provided by Univ. of Tennessee, --
292 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
293 * November 2015
294 *
295 * .. Scalar Arguments ..
296  CHARACTER signs, trans
297  INTEGER info, ldx11, ldx12, ldx21, ldx22, lwork, m, p,
298  \$ q
299 * ..
300 * .. Array Arguments ..
301  REAL phi( * ), theta( * )
302  REAL taup1( * ), taup2( * ), tauq1( * ), tauq2( * ),
303  \$ work( * ), x11( ldx11, * ), x12( ldx12, * ),
304  \$ x21( ldx21, * ), x22( ldx22, * )
305 * ..
306 *
307 * ====================================================================
308 *
309 * .. Parameters ..
310  REAL realone
311  parameter ( realone = 1.0e0 )
312  REAL one
313  parameter ( one = 1.0e0 )
314 * ..
315 * .. Local Scalars ..
316  LOGICAL colmajor, lquery
317  INTEGER i, lworkmin, lworkopt
318  REAL z1, z2, z3, z4
319 * ..
320 * .. External Subroutines ..
321  EXTERNAL saxpy, slarf, slarfgp, sscal, xerbla
322 * ..
323 * .. External Functions ..
324  REAL snrm2
325  LOGICAL lsame
326  EXTERNAL snrm2, lsame
327 * ..
328 * .. Intrinsic Functions
329  INTRINSIC atan2, cos, max, sin
330 * ..
331 * .. Executable Statements ..
332 *
333 * Test input arguments
334 *
335  info = 0
336  colmajor = .NOT. lsame( trans, 'T' )
337  IF( .NOT. lsame( signs, 'O' ) ) THEN
338  z1 = realone
339  z2 = realone
340  z3 = realone
341  z4 = realone
342  ELSE
343  z1 = realone
344  z2 = -realone
345  z3 = realone
346  z4 = -realone
347  END IF
348  lquery = lwork .EQ. -1
349 *
350  IF( m .LT. 0 ) THEN
351  info = -3
352  ELSE IF( p .LT. 0 .OR. p .GT. m ) THEN
353  info = -4
354  ELSE IF( q .LT. 0 .OR. q .GT. p .OR. q .GT. m-p .OR.
355  \$ q .GT. m-q ) THEN
356  info = -5
357  ELSE IF( colmajor .AND. ldx11 .LT. max( 1, p ) ) THEN
358  info = -7
359  ELSE IF( .NOT.colmajor .AND. ldx11 .LT. max( 1, q ) ) THEN
360  info = -7
361  ELSE IF( colmajor .AND. ldx12 .LT. max( 1, p ) ) THEN
362  info = -9
363  ELSE IF( .NOT.colmajor .AND. ldx12 .LT. max( 1, m-q ) ) THEN
364  info = -9
365  ELSE IF( colmajor .AND. ldx21 .LT. max( 1, m-p ) ) THEN
366  info = -11
367  ELSE IF( .NOT.colmajor .AND. ldx21 .LT. max( 1, q ) ) THEN
368  info = -11
369  ELSE IF( colmajor .AND. ldx22 .LT. max( 1, m-p ) ) THEN
370  info = -13
371  ELSE IF( .NOT.colmajor .AND. ldx22 .LT. max( 1, m-q ) ) THEN
372  info = -13
373  END IF
374 *
375 * Compute workspace
376 *
377  IF( info .EQ. 0 ) THEN
378  lworkopt = m - q
379  lworkmin = m - q
380  work(1) = lworkopt
381  IF( lwork .LT. lworkmin .AND. .NOT. lquery ) THEN
382  info = -21
383  END IF
384  END IF
385  IF( info .NE. 0 ) THEN
386  CALL xerbla( 'xORBDB', -info )
387  RETURN
388  ELSE IF( lquery ) THEN
389  RETURN
390  END IF
391 *
392 * Handle column-major and row-major separately
393 *
394  IF( colmajor ) THEN
395 *
396 * Reduce columns 1, ..., Q of X11, X12, X21, and X22
397 *
398  DO i = 1, q
399 *
400  IF( i .EQ. 1 ) THEN
401  CALL sscal( p-i+1, z1, x11(i,i), 1 )
402  ELSE
403  CALL sscal( p-i+1, z1*cos(phi(i-1)), x11(i,i), 1 )
404  CALL saxpy( p-i+1, -z1*z3*z4*sin(phi(i-1)), x12(i,i-1),
405  \$ 1, x11(i,i), 1 )
406  END IF
407  IF( i .EQ. 1 ) THEN
408  CALL sscal( m-p-i+1, z2, x21(i,i), 1 )
409  ELSE
410  CALL sscal( m-p-i+1, z2*cos(phi(i-1)), x21(i,i), 1 )
411  CALL saxpy( m-p-i+1, -z2*z3*z4*sin(phi(i-1)), x22(i,i-1),
412  \$ 1, x21(i,i), 1 )
413  END IF
414 *
415  theta(i) = atan2( snrm2( m-p-i+1, x21(i,i), 1 ),
416  \$ snrm2( p-i+1, x11(i,i), 1 ) )
417 *
418  IF( p .GT. i ) THEN
419  CALL slarfgp( p-i+1, x11(i,i), x11(i+1,i), 1, taup1(i) )
420  ELSE IF( p .EQ. i ) THEN
421  CALL slarfgp( p-i+1, x11(i,i), x11(i,i), 1, taup1(i) )
422  END IF
423  x11(i,i) = one
424  IF ( m-p .GT. i ) THEN
425  CALL slarfgp( m-p-i+1, x21(i,i), x21(i+1,i), 1,
426  \$ taup2(i) )
427  ELSE IF ( m-p .EQ. i ) THEN
428  CALL slarfgp( m-p-i+1, x21(i,i), x21(i,i), 1, taup2(i) )
429  END IF
430  x21(i,i) = one
431 *
432  IF ( q .GT. i ) THEN
433  CALL slarf( 'L', p-i+1, q-i, x11(i,i), 1, taup1(i),
434  \$ x11(i,i+1), ldx11, work )
435  END IF
436  IF ( m-q+1 .GT. i ) THEN
437  CALL slarf( 'L', p-i+1, m-q-i+1, x11(i,i), 1, taup1(i),
438  \$ x12(i,i), ldx12, work )
439  END IF
440  IF ( q .GT. i ) THEN
441  CALL slarf( 'L', m-p-i+1, q-i, x21(i,i), 1, taup2(i),
442  \$ x21(i,i+1), ldx21, work )
443  END IF
444  IF ( m-q+1 .GT. i ) THEN
445  CALL slarf( 'L', m-p-i+1, m-q-i+1, x21(i,i), 1, taup2(i),
446  \$ x22(i,i), ldx22, work )
447  END IF
448 *
449  IF( i .LT. q ) THEN
450  CALL sscal( q-i, -z1*z3*sin(theta(i)), x11(i,i+1),
451  \$ ldx11 )
452  CALL saxpy( q-i, z2*z3*cos(theta(i)), x21(i,i+1), ldx21,
453  \$ x11(i,i+1), ldx11 )
454  END IF
455  CALL sscal( m-q-i+1, -z1*z4*sin(theta(i)), x12(i,i), ldx12 )
456  CALL saxpy( m-q-i+1, z2*z4*cos(theta(i)), x22(i,i), ldx22,
457  \$ x12(i,i), ldx12 )
458 *
459  IF( i .LT. q )
460  \$ phi(i) = atan2( snrm2( q-i, x11(i,i+1), ldx11 ),
461  \$ snrm2( m-q-i+1, x12(i,i), ldx12 ) )
462 *
463  IF( i .LT. q ) THEN
464  IF ( q-i .EQ. 1 ) THEN
465  CALL slarfgp( q-i, x11(i,i+1), x11(i,i+1), ldx11,
466  \$ tauq1(i) )
467  ELSE
468  CALL slarfgp( q-i, x11(i,i+1), x11(i,i+2), ldx11,
469  \$ tauq1(i) )
470  END IF
471  x11(i,i+1) = one
472  END IF
473  IF ( q+i-1 .LT. m ) THEN
474  IF ( m-q .EQ. i ) THEN
475  CALL slarfgp( m-q-i+1, x12(i,i), x12(i,i), ldx12,
476  \$ tauq2(i) )
477  ELSE
478  CALL slarfgp( m-q-i+1, x12(i,i), x12(i,i+1), ldx12,
479  \$ tauq2(i) )
480  END IF
481  END IF
482  x12(i,i) = one
483 *
484  IF( i .LT. q ) THEN
485  CALL slarf( 'R', p-i, q-i, x11(i,i+1), ldx11, tauq1(i),
486  \$ x11(i+1,i+1), ldx11, work )
487  CALL slarf( 'R', m-p-i, q-i, x11(i,i+1), ldx11, tauq1(i),
488  \$ x21(i+1,i+1), ldx21, work )
489  END IF
490  IF ( p .GT. i ) THEN
491  CALL slarf( 'R', p-i, m-q-i+1, x12(i,i), ldx12, tauq2(i),
492  \$ x12(i+1,i), ldx12, work )
493  END IF
494  IF ( m-p .GT. i ) THEN
495  CALL slarf( 'R', m-p-i, m-q-i+1, x12(i,i), ldx12,
496  \$ tauq2(i), x22(i+1,i), ldx22, work )
497  END IF
498 *
499  END DO
500 *
501 * Reduce columns Q + 1, ..., P of X12, X22
502 *
503  DO i = q + 1, p
504 *
505  CALL sscal( m-q-i+1, -z1*z4, x12(i,i), ldx12 )
506  IF ( i .GE. m-q ) THEN
507  CALL slarfgp( m-q-i+1, x12(i,i), x12(i,i), ldx12,
508  \$ tauq2(i) )
509  ELSE
510  CALL slarfgp( m-q-i+1, x12(i,i), x12(i,i+1), ldx12,
511  \$ tauq2(i) )
512  END IF
513  x12(i,i) = one
514 *
515  IF ( p .GT. i ) THEN
516  CALL slarf( 'R', p-i, m-q-i+1, x12(i,i), ldx12, tauq2(i),
517  \$ x12(i+1,i), ldx12, work )
518  END IF
519  IF( m-p-q .GE. 1 )
520  \$ CALL slarf( 'R', m-p-q, m-q-i+1, x12(i,i), ldx12,
521  \$ tauq2(i), x22(q+1,i), ldx22, work )
522 *
523  END DO
524 *
525 * Reduce columns P + 1, ..., M - Q of X12, X22
526 *
527  DO i = 1, m - p - q
528 *
529  CALL sscal( m-p-q-i+1, z2*z4, x22(q+i,p+i), ldx22 )
530  IF ( i .EQ. m-p-q ) THEN
531  CALL slarfgp( m-p-q-i+1, x22(q+i,p+i), x22(q+i,p+i),
532  \$ ldx22, tauq2(p+i) )
533  ELSE
534  CALL slarfgp( m-p-q-i+1, x22(q+i,p+i), x22(q+i,p+i+1),
535  \$ ldx22, tauq2(p+i) )
536  END IF
537  x22(q+i,p+i) = one
538  IF ( i .LT. m-p-q ) THEN
539  CALL slarf( 'R', m-p-q-i, m-p-q-i+1, x22(q+i,p+i), ldx22,
540  \$ tauq2(p+i), x22(q+i+1,p+i), ldx22, work )
541  END IF
542 *
543  END DO
544 *
545  ELSE
546 *
547 * Reduce columns 1, ..., Q of X11, X12, X21, X22
548 *
549  DO i = 1, q
550 *
551  IF( i .EQ. 1 ) THEN
552  CALL sscal( p-i+1, z1, x11(i,i), ldx11 )
553  ELSE
554  CALL sscal( p-i+1, z1*cos(phi(i-1)), x11(i,i), ldx11 )
555  CALL saxpy( p-i+1, -z1*z3*z4*sin(phi(i-1)), x12(i-1,i),
556  \$ ldx12, x11(i,i), ldx11 )
557  END IF
558  IF( i .EQ. 1 ) THEN
559  CALL sscal( m-p-i+1, z2, x21(i,i), ldx21 )
560  ELSE
561  CALL sscal( m-p-i+1, z2*cos(phi(i-1)), x21(i,i), ldx21 )
562  CALL saxpy( m-p-i+1, -z2*z3*z4*sin(phi(i-1)), x22(i-1,i),
563  \$ ldx22, x21(i,i), ldx21 )
564  END IF
565 *
566  theta(i) = atan2( snrm2( m-p-i+1, x21(i,i), ldx21 ),
567  \$ snrm2( p-i+1, x11(i,i), ldx11 ) )
568 *
569  CALL slarfgp( p-i+1, x11(i,i), x11(i,i+1), ldx11, taup1(i) )
570  x11(i,i) = one
571  IF ( i .EQ. m-p ) THEN
572  CALL slarfgp( m-p-i+1, x21(i,i), x21(i,i), ldx21,
573  \$ taup2(i) )
574  ELSE
575  CALL slarfgp( m-p-i+1, x21(i,i), x21(i,i+1), ldx21,
576  \$ taup2(i) )
577  END IF
578  x21(i,i) = one
579 *
580  IF ( q .GT. i ) THEN
581  CALL slarf( 'R', q-i, p-i+1, x11(i,i), ldx11, taup1(i),
582  \$ x11(i+1,i), ldx11, work )
583  END IF
584  IF ( m-q+1 .GT. i ) THEN
585  CALL slarf( 'R', m-q-i+1, p-i+1, x11(i,i), ldx11,
586  \$ taup1(i), x12(i,i), ldx12, work )
587  END IF
588  IF ( q .GT. i ) THEN
589  CALL slarf( 'R', q-i, m-p-i+1, x21(i,i), ldx21, taup2(i),
590  \$ x21(i+1,i), ldx21, work )
591  END IF
592  IF ( m-q+1 .GT. i ) THEN
593  CALL slarf( 'R', m-q-i+1, m-p-i+1, x21(i,i), ldx21,
594  \$ taup2(i), x22(i,i), ldx22, work )
595  END IF
596 *
597  IF( i .LT. q ) THEN
598  CALL sscal( q-i, -z1*z3*sin(theta(i)), x11(i+1,i), 1 )
599  CALL saxpy( q-i, z2*z3*cos(theta(i)), x21(i+1,i), 1,
600  \$ x11(i+1,i), 1 )
601  END IF
602  CALL sscal( m-q-i+1, -z1*z4*sin(theta(i)), x12(i,i), 1 )
603  CALL saxpy( m-q-i+1, z2*z4*cos(theta(i)), x22(i,i), 1,
604  \$ x12(i,i), 1 )
605 *
606  IF( i .LT. q )
607  \$ phi(i) = atan2( snrm2( q-i, x11(i+1,i), 1 ),
608  \$ snrm2( m-q-i+1, x12(i,i), 1 ) )
609 *
610  IF( i .LT. q ) THEN
611  IF ( q-i .EQ. 1) THEN
612  CALL slarfgp( q-i, x11(i+1,i), x11(i+1,i), 1,
613  \$ tauq1(i) )
614  ELSE
615  CALL slarfgp( q-i, x11(i+1,i), x11(i+2,i), 1,
616  \$ tauq1(i) )
617  END IF
618  x11(i+1,i) = one
619  END IF
620  IF ( m-q .GT. i ) THEN
621  CALL slarfgp( m-q-i+1, x12(i,i), x12(i+1,i), 1,
622  \$ tauq2(i) )
623  ELSE
624  CALL slarfgp( m-q-i+1, x12(i,i), x12(i,i), 1,
625  \$ tauq2(i) )
626  END IF
627  x12(i,i) = one
628 *
629  IF( i .LT. q ) THEN
630  CALL slarf( 'L', q-i, p-i, x11(i+1,i), 1, tauq1(i),
631  \$ x11(i+1,i+1), ldx11, work )
632  CALL slarf( 'L', q-i, m-p-i, x11(i+1,i), 1, tauq1(i),
633  \$ x21(i+1,i+1), ldx21, work )
634  END IF
635  CALL slarf( 'L', m-q-i+1, p-i, x12(i,i), 1, tauq2(i),
636  \$ x12(i,i+1), ldx12, work )
637  IF ( m-p-i .GT. 0 ) THEN
638  CALL slarf( 'L', m-q-i+1, m-p-i, x12(i,i), 1, tauq2(i),
639  \$ x22(i,i+1), ldx22, work )
640  END IF
641 *
642  END DO
643 *
644 * Reduce columns Q + 1, ..., P of X12, X22
645 *
646  DO i = q + 1, p
647 *
648  CALL sscal( m-q-i+1, -z1*z4, x12(i,i), 1 )
649  CALL slarfgp( m-q-i+1, x12(i,i), x12(i+1,i), 1, tauq2(i) )
650  x12(i,i) = one
651 *
652  IF ( p .GT. i ) THEN
653  CALL slarf( 'L', m-q-i+1, p-i, x12(i,i), 1, tauq2(i),
654  \$ x12(i,i+1), ldx12, work )
655  END IF
656  IF( m-p-q .GE. 1 )
657  \$ CALL slarf( 'L', m-q-i+1, m-p-q, x12(i,i), 1, tauq2(i),
658  \$ x22(i,q+1), ldx22, work )
659 *
660  END DO
661 *
662 * Reduce columns P + 1, ..., M - Q of X12, X22
663 *
664  DO i = 1, m - p - q
665 *
666  CALL sscal( m-p-q-i+1, z2*z4, x22(p+i,q+i), 1 )
667  IF ( m-p-q .EQ. i ) THEN
668  CALL slarfgp( m-p-q-i+1, x22(p+i,q+i), x22(p+i,q+i), 1,
669  \$ tauq2(p+i) )
670  x22(p+i,q+i) = one
671  ELSE
672  CALL slarfgp( m-p-q-i+1, x22(p+i,q+i), x22(p+i+1,q+i), 1,
673  \$ tauq2(p+i) )
674  x22(p+i,q+i) = one
675  CALL slarf( 'L', m-p-q-i+1, m-p-q-i, x22(p+i,q+i), 1,
676  \$ tauq2(p+i), x22(p+i,q+i+1), ldx22, work )
677  END IF
678 *
679 *
680  END DO
681 *
682  END IF
683 *
684  RETURN
685 *
686 * End of SORBDB
687 *
subroutine slarfgp(N, ALPHA, X, INCX, TAU)
SLARFGP generates an elementary reflector (Householder matrix) with non-negative beta.
Definition: slarfgp.f:106
subroutine xerbla(SRNAME, INFO)
XERBLA
Definition: xerbla.f:62
real function snrm2(N, X, INCX)
SNRM2
Definition: snrm2.f:56
subroutine saxpy(N, SA, SX, INCX, SY, INCY)
SAXPY
Definition: saxpy.f:54
subroutine slarf(SIDE, M, N, V, INCV, TAU, C, LDC, WORK)
SLARF applies an elementary reflector to a general rectangular matrix.
Definition: slarf.f:126
subroutine sscal(N, SA, SX, INCX)
SSCAL
Definition: sscal.f:55
logical function lsame(CA, CB)
LSAME
Definition: lsame.f:55

Here is the call graph for this function:

Here is the caller graph for this function: