LAPACK  3.6.1 LAPACK: Linear Algebra PACKage
 subroutine cunml2 ( character SIDE, character TRANS, integer M, integer N, integer K, complex, dimension( lda, * ) A, integer LDA, complex, dimension( * ) TAU, complex, dimension( ldc, * ) C, integer LDC, complex, dimension( * ) WORK, integer INFO )

CUNML2 multiplies a general matrix by the unitary matrix from a LQ factorization determined by cgelqf (unblocked algorithm).

Purpose:
``` CUNML2 overwrites the general complex m-by-n matrix C with

Q * C  if SIDE = 'L' and TRANS = 'N', or

Q**H* C  if SIDE = 'L' and TRANS = 'C', or

C * Q  if SIDE = 'R' and TRANS = 'N', or

C * Q**H if SIDE = 'R' and TRANS = 'C',

where Q is a complex unitary matrix defined as the product of k
elementary reflectors

Q = H(k)**H . . . H(2)**H H(1)**H

as returned by CGELQF. Q is of order m if SIDE = 'L' and of order n
if SIDE = 'R'.```
Parameters
 [in] SIDE ``` SIDE is CHARACTER*1 = 'L': apply Q or Q**H from the Left = 'R': apply Q or Q**H from the Right``` [in] TRANS ``` TRANS is CHARACTER*1 = 'N': apply Q (No transpose) = 'C': apply Q**H (Conjugate transpose)``` [in] M ``` M is INTEGER The number of rows of the matrix C. M >= 0.``` [in] N ``` N is INTEGER The number of columns of the matrix C. N >= 0.``` [in] K ``` K is INTEGER The number of elementary reflectors whose product defines the matrix Q. If SIDE = 'L', M >= K >= 0; if SIDE = 'R', N >= K >= 0.``` [in] A ``` A is COMPLEX array, dimension (LDA,M) if SIDE = 'L', (LDA,N) if SIDE = 'R' The i-th row must contain the vector which defines the elementary reflector H(i), for i = 1,2,...,k, as returned by CGELQF in the first k rows of its array argument A. A is modified by the routine but restored on exit.``` [in] LDA ``` LDA is INTEGER The leading dimension of the array A. LDA >= max(1,K).``` [in] TAU ``` TAU is COMPLEX array, dimension (K) TAU(i) must contain the scalar factor of the elementary reflector H(i), as returned by CGELQF.``` [in,out] C ``` C is COMPLEX array, dimension (LDC,N) On entry, the m-by-n matrix C. On exit, C is overwritten by Q*C or Q**H*C or C*Q**H or C*Q.``` [in] LDC ``` LDC is INTEGER The leading dimension of the array C. LDC >= max(1,M).``` [out] WORK ``` WORK is COMPLEX array, dimension (N) if SIDE = 'L', (M) if SIDE = 'R'``` [out] INFO ``` INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value```
Date
September 2012

Definition at line 161 of file cunml2.f.

161 *
162 * -- LAPACK computational routine (version 3.4.2) --
163 * -- LAPACK is a software package provided by Univ. of Tennessee, --
164 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
165 * September 2012
166 *
167 * .. Scalar Arguments ..
168  CHARACTER side, trans
169  INTEGER info, k, lda, ldc, m, n
170 * ..
171 * .. Array Arguments ..
172  COMPLEX a( lda, * ), c( ldc, * ), tau( * ), work( * )
173 * ..
174 *
175 * =====================================================================
176 *
177 * .. Parameters ..
178  COMPLEX one
179  parameter ( one = ( 1.0e+0, 0.0e+0 ) )
180 * ..
181 * .. Local Scalars ..
182  LOGICAL left, notran
183  INTEGER i, i1, i2, i3, ic, jc, mi, ni, nq
184  COMPLEX aii, taui
185 * ..
186 * .. External Functions ..
187  LOGICAL lsame
188  EXTERNAL lsame
189 * ..
190 * .. External Subroutines ..
191  EXTERNAL clacgv, clarf, xerbla
192 * ..
193 * .. Intrinsic Functions ..
194  INTRINSIC conjg, max
195 * ..
196 * .. Executable Statements ..
197 *
198 * Test the input arguments
199 *
200  info = 0
201  left = lsame( side, 'L' )
202  notran = lsame( trans, 'N' )
203 *
204 * NQ is the order of Q
205 *
206  IF( left ) THEN
207  nq = m
208  ELSE
209  nq = n
210  END IF
211  IF( .NOT.left .AND. .NOT.lsame( side, 'R' ) ) THEN
212  info = -1
213  ELSE IF( .NOT.notran .AND. .NOT.lsame( trans, 'C' ) ) THEN
214  info = -2
215  ELSE IF( m.LT.0 ) THEN
216  info = -3
217  ELSE IF( n.LT.0 ) THEN
218  info = -4
219  ELSE IF( k.LT.0 .OR. k.GT.nq ) THEN
220  info = -5
221  ELSE IF( lda.LT.max( 1, k ) ) THEN
222  info = -7
223  ELSE IF( ldc.LT.max( 1, m ) ) THEN
224  info = -10
225  END IF
226  IF( info.NE.0 ) THEN
227  CALL xerbla( 'CUNML2', -info )
228  RETURN
229  END IF
230 *
231 * Quick return if possible
232 *
233  IF( m.EQ.0 .OR. n.EQ.0 .OR. k.EQ.0 )
234  \$ RETURN
235 *
236  IF( ( left .AND. notran .OR. .NOT.left .AND. .NOT.notran ) ) THEN
237  i1 = 1
238  i2 = k
239  i3 = 1
240  ELSE
241  i1 = k
242  i2 = 1
243  i3 = -1
244  END IF
245 *
246  IF( left ) THEN
247  ni = n
248  jc = 1
249  ELSE
250  mi = m
251  ic = 1
252  END IF
253 *
254  DO 10 i = i1, i2, i3
255  IF( left ) THEN
256 *
257 * H(i) or H(i)**H is applied to C(i:m,1:n)
258 *
259  mi = m - i + 1
260  ic = i
261  ELSE
262 *
263 * H(i) or H(i)**H is applied to C(1:m,i:n)
264 *
265  ni = n - i + 1
266  jc = i
267  END IF
268 *
269 * Apply H(i) or H(i)**H
270 *
271  IF( notran ) THEN
272  taui = conjg( tau( i ) )
273  ELSE
274  taui = tau( i )
275  END IF
276  IF( i.LT.nq )
277  \$ CALL clacgv( nq-i, a( i, i+1 ), lda )
278  aii = a( i, i )
279  a( i, i ) = one
280  CALL clarf( side, mi, ni, a( i, i ), lda, taui, c( ic, jc ),
281  \$ ldc, work )
282  a( i, i ) = aii
283  IF( i.LT.nq )
284  \$ CALL clacgv( nq-i, a( i, i+1 ), lda )
285  10 CONTINUE
286  RETURN
287 *
288 * End of CUNML2
289 *
subroutine xerbla(SRNAME, INFO)
XERBLA
Definition: xerbla.f:62
subroutine clarf(SIDE, M, N, V, INCV, TAU, C, LDC, WORK)
CLARF applies an elementary reflector to a general rectangular matrix.
Definition: clarf.f:130
subroutine clacgv(N, X, INCX)
CLACGV conjugates a complex vector.
Definition: clacgv.f:76
logical function lsame(CA, CB)
LSAME
Definition: lsame.f:55

Here is the call graph for this function:

Here is the caller graph for this function: