LAPACK
3.4.2
LAPACK: Linear Algebra PACKage
|
Go to the source code of this file.
Functions/Subroutines | |
subroutine | zpotrf (UPLO, N, A, LDA, INFO) |
ZPOTRF VARIANT: right looking block version of the algorithm, calling Level 3 BLAS. |
subroutine zpotrf | ( | character | UPLO, |
integer | N, | ||
complex*16, dimension( lda, * ) | A, | ||
integer | LDA, | ||
integer | INFO | ||
) |
ZPOTRF VARIANT: right looking block version of the algorithm, calling Level 3 BLAS.
Purpose:
ZPOTRF computes the Cholesky factorization of a real Hermitian positive definite matrix A. The factorization has the form A = U**H * U, if UPLO = 'U', or A = L * L**H, if UPLO = 'L', where U is an upper triangular matrix and L is lower triangular. This is the right looking block version of the algorithm, calling Level 3 BLAS.
[in] | UPLO | UPLO is CHARACTER*1 = 'U': Upper triangle of A is stored; = 'L': Lower triangle of A is stored. |
[in] | N | N is INTEGER The order of the matrix A. N >= 0. |
[in,out] | A | A is COMPLEX*16 array, dimension (LDA,N) On entry, the Hermitian matrix A. If UPLO = 'U', the leading N-by-N upper triangular part of A contains the upper triangular part of the matrix A, and the strictly lower triangular part of A is not referenced. If UPLO = 'L', the leading N-by-N lower triangular part of A contains the lower triangular part of the matrix A, and the strictly upper triangular part of A is not referenced. On exit, if INFO = 0, the factor U or L from the Cholesky factorization A = U**H*U or A = L*L**H. |
[in] | LDA | LDA is INTEGER The leading dimension of the array A. LDA >= max(1,N). |
[out] | INFO | INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value > 0: if INFO = i, the leading minor of order i is not positive definite, and the factorization could not be completed. |
Definition at line 101 of file zpotrf.f.