LAPACK 3.3.1 Linear Algebra PACKage

# cdrvpt.f

Go to the documentation of this file.
```00001       SUBROUTINE CDRVPT( DOTYPE, NN, NVAL, NRHS, THRESH, TSTERR, A, D,
00002      \$                   E, B, X, XACT, WORK, RWORK, NOUT )
00003 *
00004 *  -- LAPACK test routine (version 3.1) --
00005 *     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
00006 *     November 2006
00007 *
00008 *     .. Scalar Arguments ..
00009       LOGICAL            TSTERR
00010       INTEGER            NN, NOUT, NRHS
00011       REAL               THRESH
00012 *     ..
00013 *     .. Array Arguments ..
00014       LOGICAL            DOTYPE( * )
00015       INTEGER            NVAL( * )
00016       REAL               D( * ), RWORK( * )
00017       COMPLEX            A( * ), B( * ), E( * ), WORK( * ), X( * ),
00018      \$                   XACT( * )
00019 *     ..
00020 *
00021 *  Purpose
00022 *  =======
00023 *
00024 *  CDRVPT tests CPTSV and -SVX.
00025 *
00026 *  Arguments
00027 *  =========
00028 *
00029 *  DOTYPE  (input) LOGICAL array, dimension (NTYPES)
00030 *          The matrix types to be used for testing.  Matrices of type j
00031 *          (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) =
00032 *          .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used.
00033 *
00034 *  NN      (input) INTEGER
00035 *          The number of values of N contained in the vector NVAL.
00036 *
00037 *  NVAL    (input) INTEGER array, dimension (NN)
00038 *          The values of the matrix dimension N.
00039 *
00040 *  NRHS    (input) INTEGER
00041 *          The number of right hand side vectors to be generated for
00042 *          each linear system.
00043 *
00044 *  THRESH  (input) REAL
00045 *          The threshold value for the test ratios.  A result is
00046 *          included in the output file if RESULT >= THRESH.  To have
00047 *          every test ratio printed, use THRESH = 0.
00048 *
00049 *  TSTERR  (input) LOGICAL
00050 *          Flag that indicates whether error exits are to be tested.
00051 *
00052 *  A       (workspace) COMPLEX array, dimension (NMAX*2)
00053 *
00054 *  D       (workspace) REAL array, dimension (NMAX*2)
00055 *
00056 *  E       (workspace) COMPLEX array, dimension (NMAX*2)
00057 *
00058 *  B       (workspace) COMPLEX array, dimension (NMAX*NRHS)
00059 *
00060 *  X       (workspace) COMPLEX array, dimension (NMAX*NRHS)
00061 *
00062 *  XACT    (workspace) COMPLEX array, dimension (NMAX*NRHS)
00063 *
00064 *  WORK    (workspace) COMPLEX array, dimension
00065 *                      (NMAX*max(3,NRHS))
00066 *
00067 *  RWORK   (workspace) REAL array, dimension (NMAX+2*NRHS)
00068 *
00069 *  NOUT    (input) INTEGER
00070 *          The unit number for output.
00071 *
00072 *  =====================================================================
00073 *
00074 *     .. Parameters ..
00075       REAL               ONE, ZERO
00076       PARAMETER          ( ONE = 1.0E+0, ZERO = 0.0E+0 )
00077       INTEGER            NTYPES
00078       PARAMETER          ( NTYPES = 12 )
00079       INTEGER            NTESTS
00080       PARAMETER          ( NTESTS = 6 )
00081 *     ..
00082 *     .. Local Scalars ..
00083       LOGICAL            ZEROT
00084       CHARACTER          DIST, FACT, TYPE
00085       CHARACTER*3        PATH
00086       INTEGER            I, IA, IFACT, IMAT, IN, INFO, IX, IZERO, J, K,
00087      \$                   K1, KL, KU, LDA, MODE, N, NERRS, NFAIL, NIMAT,
00088      \$                   NRUN, NT
00089       REAL               AINVNM, ANORM, COND, DMAX, RCOND, RCONDC
00090 *     ..
00091 *     .. Local Arrays ..
00092       INTEGER            ISEED( 4 ), ISEEDY( 4 )
00093       REAL               RESULT( NTESTS ), Z( 3 )
00094 *     ..
00095 *     .. External Functions ..
00096       INTEGER            ISAMAX
00097       REAL               CLANHT, SCASUM, SGET06
00098       EXTERNAL           ISAMAX, CLANHT, SCASUM, SGET06
00099 *     ..
00100 *     .. External Subroutines ..
00101       EXTERNAL           ALADHD, ALAERH, ALASVM, CCOPY, CERRVX, CGET04,
00102      \$                   CLACPY, CLAPTM, CLARNV, CLASET, CLATB4, CLATMS,
00103      \$                   CPTSV, CPTSVX, CPTT01, CPTT02, CPTT05, CPTTRF,
00104      \$                   CPTTRS, CSSCAL, SCOPY, SLARNV, SSCAL
00105 *     ..
00106 *     .. Intrinsic Functions ..
00107       INTRINSIC          ABS, CMPLX, MAX
00108 *     ..
00109 *     .. Scalars in Common ..
00110       LOGICAL            LERR, OK
00111       CHARACTER*32       SRNAMT
00112       INTEGER            INFOT, NUNIT
00113 *     ..
00114 *     .. Common blocks ..
00115       COMMON             / INFOC / INFOT, NUNIT, OK, LERR
00116       COMMON             / SRNAMC / SRNAMT
00117 *     ..
00118 *     .. Data statements ..
00119       DATA               ISEEDY / 0, 0, 0, 1 /
00120 *     ..
00121 *     .. Executable Statements ..
00122 *
00123       PATH( 1: 1 ) = 'Complex precision'
00124       PATH( 2: 3 ) = 'PT'
00125       NRUN = 0
00126       NFAIL = 0
00127       NERRS = 0
00128       DO 10 I = 1, 4
00129          ISEED( I ) = ISEEDY( I )
00130    10 CONTINUE
00131 *
00132 *     Test the error exits
00133 *
00134       IF( TSTERR )
00135      \$   CALL CERRVX( PATH, NOUT )
00136       INFOT = 0
00137 *
00138       DO 120 IN = 1, NN
00139 *
00140 *        Do for each value of N in NVAL.
00141 *
00142          N = NVAL( IN )
00143          LDA = MAX( 1, N )
00144          NIMAT = NTYPES
00145          IF( N.LE.0 )
00146      \$      NIMAT = 1
00147 *
00148          DO 110 IMAT = 1, NIMAT
00149 *
00150 *           Do the tests only if DOTYPE( IMAT ) is true.
00151 *
00152             IF( N.GT.0 .AND. .NOT.DOTYPE( IMAT ) )
00153      \$         GO TO 110
00154 *
00155 *           Set up parameters with CLATB4.
00156 *
00157             CALL CLATB4( PATH, IMAT, N, N, TYPE, KL, KU, ANORM, MODE,
00158      \$                   COND, DIST )
00159 *
00160             ZEROT = IMAT.GE.8 .AND. IMAT.LE.10
00161             IF( IMAT.LE.6 ) THEN
00162 *
00163 *              Type 1-6:  generate a symmetric tridiagonal matrix of
00164 *              known condition number in lower triangular band storage.
00165 *
00166                SRNAMT = 'CLATMS'
00167                CALL CLATMS( N, N, DIST, ISEED, TYPE, RWORK, MODE, COND,
00168      \$                      ANORM, KL, KU, 'B', A, 2, WORK, INFO )
00169 *
00170 *              Check the error code from CLATMS.
00171 *
00172                IF( INFO.NE.0 ) THEN
00173                   CALL ALAERH( PATH, 'CLATMS', INFO, 0, ' ', N, N, KL,
00174      \$                         KU, -1, IMAT, NFAIL, NERRS, NOUT )
00175                   GO TO 110
00176                END IF
00177                IZERO = 0
00178 *
00179 *              Copy the matrix to D and E.
00180 *
00181                IA = 1
00182                DO 20 I = 1, N - 1
00183                   D( I ) = A( IA )
00184                   E( I ) = A( IA+1 )
00185                   IA = IA + 2
00186    20          CONTINUE
00187                IF( N.GT.0 )
00188      \$            D( N ) = A( IA )
00189             ELSE
00190 *
00191 *              Type 7-12:  generate a diagonally dominant matrix with
00192 *              unknown condition number in the vectors D and E.
00193 *
00194                IF( .NOT.ZEROT .OR. .NOT.DOTYPE( 7 ) ) THEN
00195 *
00196 *                 Let D and E have values from [-1,1].
00197 *
00198                   CALL SLARNV( 2, ISEED, N, D )
00199                   CALL CLARNV( 2, ISEED, N-1, E )
00200 *
00201 *                 Make the tridiagonal matrix diagonally dominant.
00202 *
00203                   IF( N.EQ.1 ) THEN
00204                      D( 1 ) = ABS( D( 1 ) )
00205                   ELSE
00206                      D( 1 ) = ABS( D( 1 ) ) + ABS( E( 1 ) )
00207                      D( N ) = ABS( D( N ) ) + ABS( E( N-1 ) )
00208                      DO 30 I = 2, N - 1
00209                         D( I ) = ABS( D( I ) ) + ABS( E( I ) ) +
00210      \$                           ABS( E( I-1 ) )
00211    30                CONTINUE
00212                   END IF
00213 *
00214 *                 Scale D and E so the maximum element is ANORM.
00215 *
00216                   IX = ISAMAX( N, D, 1 )
00217                   DMAX = D( IX )
00218                   CALL SSCAL( N, ANORM / DMAX, D, 1 )
00219                   IF( N.GT.1 )
00220      \$               CALL CSSCAL( N-1, ANORM / DMAX, E, 1 )
00221 *
00222                ELSE IF( IZERO.GT.0 ) THEN
00223 *
00224 *                 Reuse the last matrix by copying back the zeroed out
00225 *                 elements.
00226 *
00227                   IF( IZERO.EQ.1 ) THEN
00228                      D( 1 ) = Z( 2 )
00229                      IF( N.GT.1 )
00230      \$                  E( 1 ) = Z( 3 )
00231                   ELSE IF( IZERO.EQ.N ) THEN
00232                      E( N-1 ) = Z( 1 )
00233                      D( N ) = Z( 2 )
00234                   ELSE
00235                      E( IZERO-1 ) = Z( 1 )
00236                      D( IZERO ) = Z( 2 )
00237                      E( IZERO ) = Z( 3 )
00238                   END IF
00239                END IF
00240 *
00241 *              For types 8-10, set one row and column of the matrix to
00242 *              zero.
00243 *
00244                IZERO = 0
00245                IF( IMAT.EQ.8 ) THEN
00246                   IZERO = 1
00247                   Z( 2 ) = D( 1 )
00248                   D( 1 ) = ZERO
00249                   IF( N.GT.1 ) THEN
00250                      Z( 3 ) = E( 1 )
00251                      E( 1 ) = ZERO
00252                   END IF
00253                ELSE IF( IMAT.EQ.9 ) THEN
00254                   IZERO = N
00255                   IF( N.GT.1 ) THEN
00256                      Z( 1 ) = E( N-1 )
00257                      E( N-1 ) = ZERO
00258                   END IF
00259                   Z( 2 ) = D( N )
00260                   D( N ) = ZERO
00261                ELSE IF( IMAT.EQ.10 ) THEN
00262                   IZERO = ( N+1 ) / 2
00263                   IF( IZERO.GT.1 ) THEN
00264                      Z( 1 ) = E( IZERO-1 )
00265                      E( IZERO-1 ) = ZERO
00266                      Z( 3 ) = E( IZERO )
00267                      E( IZERO ) = ZERO
00268                   END IF
00269                   Z( 2 ) = D( IZERO )
00270                   D( IZERO ) = ZERO
00271                END IF
00272             END IF
00273 *
00274 *           Generate NRHS random solution vectors.
00275 *
00276             IX = 1
00277             DO 40 J = 1, NRHS
00278                CALL CLARNV( 2, ISEED, N, XACT( IX ) )
00279                IX = IX + LDA
00280    40       CONTINUE
00281 *
00282 *           Set the right hand side.
00283 *
00284             CALL CLAPTM( 'Lower', N, NRHS, ONE, D, E, XACT, LDA, ZERO,
00285      \$                   B, LDA )
00286 *
00287             DO 100 IFACT = 1, 2
00288                IF( IFACT.EQ.1 ) THEN
00289                   FACT = 'F'
00290                ELSE
00291                   FACT = 'N'
00292                END IF
00293 *
00294 *              Compute the condition number for comparison with
00295 *              the value returned by CPTSVX.
00296 *
00297                IF( ZEROT ) THEN
00298                   IF( IFACT.EQ.1 )
00299      \$               GO TO 100
00300                   RCONDC = ZERO
00301 *
00302                ELSE IF( IFACT.EQ.1 ) THEN
00303 *
00304 *                 Compute the 1-norm of A.
00305 *
00306                   ANORM = CLANHT( '1', N, D, E )
00307 *
00308                   CALL SCOPY( N, D, 1, D( N+1 ), 1 )
00309                   IF( N.GT.1 )
00310      \$               CALL CCOPY( N-1, E, 1, E( N+1 ), 1 )
00311 *
00312 *                 Factor the matrix A.
00313 *
00314                   CALL CPTTRF( N, D( N+1 ), E( N+1 ), INFO )
00315 *
00316 *                 Use CPTTRS to solve for one column at a time of
00317 *                 inv(A), computing the maximum column sum as we go.
00318 *
00319                   AINVNM = ZERO
00320                   DO 60 I = 1, N
00321                      DO 50 J = 1, N
00322                         X( J ) = ZERO
00323    50                CONTINUE
00324                      X( I ) = ONE
00325                      CALL CPTTRS( 'Lower', N, 1, D( N+1 ), E( N+1 ), X,
00326      \$                            LDA, INFO )
00327                      AINVNM = MAX( AINVNM, SCASUM( N, X, 1 ) )
00328    60             CONTINUE
00329 *
00330 *                 Compute the 1-norm condition number of A.
00331 *
00332                   IF( ANORM.LE.ZERO .OR. AINVNM.LE.ZERO ) THEN
00333                      RCONDC = ONE
00334                   ELSE
00335                      RCONDC = ( ONE / ANORM ) / AINVNM
00336                   END IF
00337                END IF
00338 *
00339                IF( IFACT.EQ.2 ) THEN
00340 *
00341 *                 --- Test CPTSV --
00342 *
00343                   CALL SCOPY( N, D, 1, D( N+1 ), 1 )
00344                   IF( N.GT.1 )
00345      \$               CALL CCOPY( N-1, E, 1, E( N+1 ), 1 )
00346                   CALL CLACPY( 'Full', N, NRHS, B, LDA, X, LDA )
00347 *
00348 *                 Factor A as L*D*L' and solve the system A*X = B.
00349 *
00350                   SRNAMT = 'CPTSV '
00351                   CALL CPTSV( N, NRHS, D( N+1 ), E( N+1 ), X, LDA,
00352      \$                        INFO )
00353 *
00354 *                 Check error code from CPTSV .
00355 *
00356                   IF( INFO.NE.IZERO )
00357      \$               CALL ALAERH( PATH, 'CPTSV ', INFO, IZERO, ' ', N,
00358      \$                            N, 1, 1, NRHS, IMAT, NFAIL, NERRS,
00359      \$                            NOUT )
00360                   NT = 0
00361                   IF( IZERO.EQ.0 ) THEN
00362 *
00363 *                    Check the factorization by computing the ratio
00364 *                       norm(L*D*L' - A) / (n * norm(A) * EPS )
00365 *
00366                      CALL CPTT01( N, D, E, D( N+1 ), E( N+1 ), WORK,
00367      \$                            RESULT( 1 ) )
00368 *
00369 *                    Compute the residual in the solution.
00370 *
00371                      CALL CLACPY( 'Full', N, NRHS, B, LDA, WORK, LDA )
00372                      CALL CPTT02( 'Lower', N, NRHS, D, E, X, LDA, WORK,
00373      \$                            LDA, RESULT( 2 ) )
00374 *
00375 *                    Check solution from generated exact solution.
00376 *
00377                      CALL CGET04( N, NRHS, X, LDA, XACT, LDA, RCONDC,
00378      \$                            RESULT( 3 ) )
00379                      NT = 3
00380                   END IF
00381 *
00382 *                 Print information about the tests that did not pass
00383 *                 the threshold.
00384 *
00385                   DO 70 K = 1, NT
00386                      IF( RESULT( K ).GE.THRESH ) THEN
00387                         IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
00388      \$                     CALL ALADHD( NOUT, PATH )
00389                         WRITE( NOUT, FMT = 9999 )'CPTSV ', N, IMAT, K,
00390      \$                     RESULT( K )
00391                         NFAIL = NFAIL + 1
00392                      END IF
00393    70             CONTINUE
00394                   NRUN = NRUN + NT
00395                END IF
00396 *
00397 *              --- Test CPTSVX ---
00398 *
00399                IF( IFACT.GT.1 ) THEN
00400 *
00401 *                 Initialize D( N+1:2*N ) and E( N+1:2*N ) to zero.
00402 *
00403                   DO 80 I = 1, N - 1
00404                      D( N+I ) = ZERO
00405                      E( N+I ) = ZERO
00406    80             CONTINUE
00407                   IF( N.GT.0 )
00408      \$               D( N+N ) = ZERO
00409                END IF
00410 *
00411                CALL CLASET( 'Full', N, NRHS, CMPLX( ZERO ),
00412      \$                      CMPLX( ZERO ), X, LDA )
00413 *
00414 *              Solve the system and compute the condition number and
00415 *              error bounds using CPTSVX.
00416 *
00417                SRNAMT = 'CPTSVX'
00418                CALL CPTSVX( FACT, N, NRHS, D, E, D( N+1 ), E( N+1 ), B,
00419      \$                      LDA, X, LDA, RCOND, RWORK, RWORK( NRHS+1 ),
00420      \$                      WORK, RWORK( 2*NRHS+1 ), INFO )
00421 *
00422 *              Check the error code from CPTSVX.
00423 *
00424                IF( INFO.NE.IZERO )
00425      \$            CALL ALAERH( PATH, 'CPTSVX', INFO, IZERO, FACT, N, N,
00426      \$                         1, 1, NRHS, IMAT, NFAIL, NERRS, NOUT )
00427                IF( IZERO.EQ.0 ) THEN
00428                   IF( IFACT.EQ.2 ) THEN
00429 *
00430 *                    Check the factorization by computing the ratio
00431 *                       norm(L*D*L' - A) / (n * norm(A) * EPS )
00432 *
00433                      K1 = 1
00434                      CALL CPTT01( N, D, E, D( N+1 ), E( N+1 ), WORK,
00435      \$                            RESULT( 1 ) )
00436                   ELSE
00437                      K1 = 2
00438                   END IF
00439 *
00440 *                 Compute the residual in the solution.
00441 *
00442                   CALL CLACPY( 'Full', N, NRHS, B, LDA, WORK, LDA )
00443                   CALL CPTT02( 'Lower', N, NRHS, D, E, X, LDA, WORK,
00444      \$                         LDA, RESULT( 2 ) )
00445 *
00446 *                 Check solution from generated exact solution.
00447 *
00448                   CALL CGET04( N, NRHS, X, LDA, XACT, LDA, RCONDC,
00449      \$                         RESULT( 3 ) )
00450 *
00451 *                 Check error bounds from iterative refinement.
00452 *
00453                   CALL CPTT05( N, NRHS, D, E, B, LDA, X, LDA, XACT, LDA,
00454      \$                         RWORK, RWORK( NRHS+1 ), RESULT( 4 ) )
00455                ELSE
00456                   K1 = 6
00457                END IF
00458 *
00459 *              Check the reciprocal of the condition number.
00460 *
00461                RESULT( 6 ) = SGET06( RCOND, RCONDC )
00462 *
00463 *              Print information about the tests that did not pass
00464 *              the threshold.
00465 *
00466                DO 90 K = K1, 6
00467                   IF( RESULT( K ).GE.THRESH ) THEN
00468                      IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
00469      \$                  CALL ALADHD( NOUT, PATH )
00470                      WRITE( NOUT, FMT = 9998 )'CPTSVX', FACT, N, IMAT,
00471      \$                  K, RESULT( K )
00472                      NFAIL = NFAIL + 1
00473                   END IF
00474    90          CONTINUE
00475                NRUN = NRUN + 7 - K1
00476   100       CONTINUE
00477   110    CONTINUE
00478   120 CONTINUE
00479 *
00480 *     Print a summary of the results.
00481 *
00482       CALL ALASVM( PATH, NOUT, NFAIL, NRUN, NERRS )
00483 *
00484  9999 FORMAT( 1X, A, ', N =', I5, ', type ', I2, ', test ', I2,
00485      \$      ', ratio = ', G12.5 )
00486  9998 FORMAT( 1X, A, ', FACT=''', A1, ''', N =', I5, ', type ', I2,
00487      \$      ', test ', I2, ', ratio = ', G12.5 )
00488       RETURN
00489 *
00490 *     End of CDRVPT
00491 *
00492       END
```