LAPACK 3.3.1 Linear Algebra PACKage

# clangt.f

Go to the documentation of this file.
```00001       REAL             FUNCTION CLANGT( NORM, N, DL, D, DU )
00002 *
00003 *  -- LAPACK auxiliary routine (version 3.2) --
00004 *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
00005 *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
00006 *     November 2006
00007 *
00008 *     .. Scalar Arguments ..
00009       CHARACTER          NORM
00010       INTEGER            N
00011 *     ..
00012 *     .. Array Arguments ..
00013       COMPLEX            D( * ), DL( * ), DU( * )
00014 *     ..
00015 *
00016 *  Purpose
00017 *  =======
00018 *
00019 *  CLANGT  returns the value of the one norm,  or the Frobenius norm, or
00020 *  the  infinity norm,  or the  element of  largest absolute value  of a
00021 *  complex tridiagonal matrix A.
00022 *
00023 *  Description
00024 *  ===========
00025 *
00026 *  CLANGT returns the value
00027 *
00028 *     CLANGT = ( max(abs(A(i,j))), NORM = 'M' or 'm'
00029 *              (
00030 *              ( norm1(A),         NORM = '1', 'O' or 'o'
00031 *              (
00032 *              ( normI(A),         NORM = 'I' or 'i'
00033 *              (
00034 *              ( normF(A),         NORM = 'F', 'f', 'E' or 'e'
00035 *
00036 *  where  norm1  denotes the  one norm of a matrix (maximum column sum),
00037 *  normI  denotes the  infinity norm  of a matrix  (maximum row sum) and
00038 *  normF  denotes the  Frobenius norm of a matrix (square root of sum of
00039 *  squares).  Note that  max(abs(A(i,j)))  is not a consistent matrix norm.
00040 *
00041 *  Arguments
00042 *  =========
00043 *
00044 *  NORM    (input) CHARACTER*1
00045 *          Specifies the value to be returned in CLANGT as described
00046 *          above.
00047 *
00048 *  N       (input) INTEGER
00049 *          The order of the matrix A.  N >= 0.  When N = 0, CLANGT is
00050 *          set to zero.
00051 *
00052 *  DL      (input) COMPLEX array, dimension (N-1)
00053 *          The (n-1) sub-diagonal elements of A.
00054 *
00055 *  D       (input) COMPLEX array, dimension (N)
00056 *          The diagonal elements of A.
00057 *
00058 *  DU      (input) COMPLEX array, dimension (N-1)
00059 *          The (n-1) super-diagonal elements of A.
00060 *
00061 *  =====================================================================
00062 *
00063 *     .. Parameters ..
00064       REAL               ONE, ZERO
00065       PARAMETER          ( ONE = 1.0E+0, ZERO = 0.0E+0 )
00066 *     ..
00067 *     .. Local Scalars ..
00068       INTEGER            I
00069       REAL               ANORM, SCALE, SUM
00070 *     ..
00071 *     .. External Functions ..
00072       LOGICAL            LSAME
00073       EXTERNAL           LSAME
00074 *     ..
00075 *     .. External Subroutines ..
00076       EXTERNAL           CLASSQ
00077 *     ..
00078 *     .. Intrinsic Functions ..
00079       INTRINSIC          ABS, MAX, SQRT
00080 *     ..
00081 *     .. Executable Statements ..
00082 *
00083       IF( N.LE.0 ) THEN
00084          ANORM = ZERO
00085       ELSE IF( LSAME( NORM, 'M' ) ) THEN
00086 *
00087 *        Find max(abs(A(i,j))).
00088 *
00089          ANORM = ABS( D( N ) )
00090          DO 10 I = 1, N - 1
00091             ANORM = MAX( ANORM, ABS( DL( I ) ) )
00092             ANORM = MAX( ANORM, ABS( D( I ) ) )
00093             ANORM = MAX( ANORM, ABS( DU( I ) ) )
00094    10    CONTINUE
00095       ELSE IF( LSAME( NORM, 'O' ) .OR. NORM.EQ.'1' ) THEN
00096 *
00097 *        Find norm1(A).
00098 *
00099          IF( N.EQ.1 ) THEN
00100             ANORM = ABS( D( 1 ) )
00101          ELSE
00102             ANORM = MAX( ABS( D( 1 ) )+ABS( DL( 1 ) ),
00103      \$              ABS( D( N ) )+ABS( DU( N-1 ) ) )
00104             DO 20 I = 2, N - 1
00105                ANORM = MAX( ANORM, ABS( D( I ) )+ABS( DL( I ) )+
00106      \$                 ABS( DU( I-1 ) ) )
00107    20       CONTINUE
00108          END IF
00109       ELSE IF( LSAME( NORM, 'I' ) ) THEN
00110 *
00111 *        Find normI(A).
00112 *
00113          IF( N.EQ.1 ) THEN
00114             ANORM = ABS( D( 1 ) )
00115          ELSE
00116             ANORM = MAX( ABS( D( 1 ) )+ABS( DU( 1 ) ),
00117      \$              ABS( D( N ) )+ABS( DL( N-1 ) ) )
00118             DO 30 I = 2, N - 1
00119                ANORM = MAX( ANORM, ABS( D( I ) )+ABS( DU( I ) )+
00120      \$                 ABS( DL( I-1 ) ) )
00121    30       CONTINUE
00122          END IF
00123       ELSE IF( ( LSAME( NORM, 'F' ) ) .OR. ( LSAME( NORM, 'E' ) ) ) THEN
00124 *
00125 *        Find normF(A).
00126 *
00127          SCALE = ZERO
00128          SUM = ONE
00129          CALL CLASSQ( N, D, 1, SCALE, SUM )
00130          IF( N.GT.1 ) THEN
00131             CALL CLASSQ( N-1, DL, 1, SCALE, SUM )
00132             CALL CLASSQ( N-1, DU, 1, SCALE, SUM )
00133          END IF
00134          ANORM = SCALE*SQRT( SUM )
00135       END IF
00136 *
00137       CLANGT = ANORM
00138       RETURN
00139 *
00140 *     End of CLANGT
00141 *
00142       END
```