LAPACK 3.3.0

# dlange.f

Go to the documentation of this file.
```00001       DOUBLE PRECISION FUNCTION DLANGE( NORM, M, N, A, LDA, WORK )
00002 *
00003 *  -- LAPACK auxiliary routine (version 3.2) --
00004 *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
00005 *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
00006 *     November 2006
00007 *
00008 *     .. Scalar Arguments ..
00009       CHARACTER          NORM
00010       INTEGER            LDA, M, N
00011 *     ..
00012 *     .. Array Arguments ..
00013       DOUBLE PRECISION   A( LDA, * ), WORK( * )
00014 *     ..
00015 *
00016 *  Purpose
00017 *  =======
00018 *
00019 *  DLANGE  returns the value of the one norm,  or the Frobenius norm, or
00020 *  the  infinity norm,  or the  element of  largest absolute value  of a
00021 *  real matrix A.
00022 *
00023 *  Description
00024 *  ===========
00025 *
00026 *  DLANGE returns the value
00027 *
00028 *     DLANGE = ( max(abs(A(i,j))), NORM = 'M' or 'm'
00029 *              (
00030 *              ( norm1(A),         NORM = '1', 'O' or 'o'
00031 *              (
00032 *              ( normI(A),         NORM = 'I' or 'i'
00033 *              (
00034 *              ( normF(A),         NORM = 'F', 'f', 'E' or 'e'
00035 *
00036 *  where  norm1  denotes the  one norm of a matrix (maximum column sum),
00037 *  normI  denotes the  infinity norm  of a matrix  (maximum row sum) and
00038 *  normF  denotes the  Frobenius norm of a matrix (square root of sum of
00039 *  squares).  Note that  max(abs(A(i,j)))  is not a consistent matrix norm.
00040 *
00041 *  Arguments
00042 *  =========
00043 *
00044 *  NORM    (input) CHARACTER*1
00045 *          Specifies the value to be returned in DLANGE as described
00046 *          above.
00047 *
00048 *  M       (input) INTEGER
00049 *          The number of rows of the matrix A.  M >= 0.  When M = 0,
00050 *          DLANGE is set to zero.
00051 *
00052 *  N       (input) INTEGER
00053 *          The number of columns of the matrix A.  N >= 0.  When N = 0,
00054 *          DLANGE is set to zero.
00055 *
00056 *  A       (input) DOUBLE PRECISION array, dimension (LDA,N)
00057 *          The m by n matrix A.
00058 *
00059 *  LDA     (input) INTEGER
00060 *          The leading dimension of the array A.  LDA >= max(M,1).
00061 *
00062 *  WORK    (workspace) DOUBLE PRECISION array, dimension (MAX(1,LWORK)),
00063 *          where LWORK >= M when NORM = 'I'; otherwise, WORK is not
00064 *          referenced.
00065 *
00066 * =====================================================================
00067 *
00068 *     .. Parameters ..
00069       DOUBLE PRECISION   ONE, ZERO
00070       PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
00071 *     ..
00072 *     .. Local Scalars ..
00073       INTEGER            I, J
00074       DOUBLE PRECISION   SCALE, SUM, VALUE
00075 *     ..
00076 *     .. External Subroutines ..
00077       EXTERNAL           DLASSQ
00078 *     ..
00079 *     .. External Functions ..
00080       LOGICAL            LSAME
00081       EXTERNAL           LSAME
00082 *     ..
00083 *     .. Intrinsic Functions ..
00084       INTRINSIC          ABS, MAX, MIN, SQRT
00085 *     ..
00086 *     .. Executable Statements ..
00087 *
00088       IF( MIN( M, N ).EQ.0 ) THEN
00089          VALUE = ZERO
00090       ELSE IF( LSAME( NORM, 'M' ) ) THEN
00091 *
00092 *        Find max(abs(A(i,j))).
00093 *
00094          VALUE = ZERO
00095          DO 20 J = 1, N
00096             DO 10 I = 1, M
00097                VALUE = MAX( VALUE, ABS( A( I, J ) ) )
00098    10       CONTINUE
00099    20    CONTINUE
00100       ELSE IF( ( LSAME( NORM, 'O' ) ) .OR. ( NORM.EQ.'1' ) ) THEN
00101 *
00102 *        Find norm1(A).
00103 *
00104          VALUE = ZERO
00105          DO 40 J = 1, N
00106             SUM = ZERO
00107             DO 30 I = 1, M
00108                SUM = SUM + ABS( A( I, J ) )
00109    30       CONTINUE
00110             VALUE = MAX( VALUE, SUM )
00111    40    CONTINUE
00112       ELSE IF( LSAME( NORM, 'I' ) ) THEN
00113 *
00114 *        Find normI(A).
00115 *
00116          DO 50 I = 1, M
00117             WORK( I ) = ZERO
00118    50    CONTINUE
00119          DO 70 J = 1, N
00120             DO 60 I = 1, M
00121                WORK( I ) = WORK( I ) + ABS( A( I, J ) )
00122    60       CONTINUE
00123    70    CONTINUE
00124          VALUE = ZERO
00125          DO 80 I = 1, M
00126             VALUE = MAX( VALUE, WORK( I ) )
00127    80    CONTINUE
00128       ELSE IF( ( LSAME( NORM, 'F' ) ) .OR. ( LSAME( NORM, 'E' ) ) ) THEN
00129 *
00130 *        Find normF(A).
00131 *
00132          SCALE = ZERO
00133          SUM = ONE
00134          DO 90 J = 1, N
00135             CALL DLASSQ( M, A( 1, J ), 1, SCALE, SUM )
00136    90    CONTINUE
00137          VALUE = SCALE*SQRT( SUM )
00138       END IF
00139 *
00140       DLANGE = VALUE
00141       RETURN
00142 *
00143 *     End of DLANGE
00144 *
00145       END
```