LAPACK 3.3.0

# zptt05.f

Go to the documentation of this file.
```00001       SUBROUTINE ZPTT05( N, NRHS, D, E, B, LDB, X, LDX, XACT, LDXACT,
00002      \$                   FERR, BERR, RESLTS )
00003 *
00004 *  -- LAPACK test routine (version 3.1) --
00005 *     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
00006 *     November 2006
00007 *
00008 *     .. Scalar Arguments ..
00009       INTEGER            LDB, LDX, LDXACT, N, NRHS
00010 *     ..
00011 *     .. Array Arguments ..
00012       DOUBLE PRECISION   BERR( * ), D( * ), FERR( * ), RESLTS( * )
00013       COMPLEX*16         B( LDB, * ), E( * ), X( LDX, * ),
00014      \$                   XACT( LDXACT, * )
00015 *     ..
00016 *
00017 *  Purpose
00018 *  =======
00019 *
00020 *  ZPTT05 tests the error bounds from iterative refinement for the
00021 *  computed solution to a system of equations A*X = B, where A is a
00022 *  Hermitian tridiagonal matrix of order n.
00023 *
00024 *  RESLTS(1) = test of the error bound
00025 *            = norm(X - XACT) / ( norm(X) * FERR )
00026 *
00027 *  A large value is returned if this ratio is not less than one.
00028 *
00029 *  RESLTS(2) = residual from the iterative refinement routine
00030 *            = the maximum of BERR / ( NZ*EPS + (*) ), where
00031 *              (*) = NZ*UNFL / (min_i (abs(A)*abs(X) +abs(b))_i )
00032 *              and NZ = max. number of nonzeros in any row of A, plus 1
00033 *
00034 *  Arguments
00035 *  =========
00036 *
00037 *  N       (input) INTEGER
00038 *          The number of rows of the matrices X, B, and XACT, and the
00039 *          order of the matrix A.  N >= 0.
00040 *
00041 *  NRHS    (input) INTEGER
00042 *          The number of columns of the matrices X, B, and XACT.
00043 *          NRHS >= 0.
00044 *
00045 *  D       (input) DOUBLE PRECISION array, dimension (N)
00046 *          The n diagonal elements of the tridiagonal matrix A.
00047 *
00048 *  E       (input) COMPLEX*16 array, dimension (N-1)
00049 *          The (n-1) subdiagonal elements of the tridiagonal matrix A.
00050 *
00051 *  B       (input) COMPLEX*16 array, dimension (LDB,NRHS)
00052 *          The right hand side vectors for the system of linear
00053 *          equations.
00054 *
00055 *  LDB     (input) INTEGER
00056 *          The leading dimension of the array B.  LDB >= max(1,N).
00057 *
00058 *  X       (input) COMPLEX*16 array, dimension (LDX,NRHS)
00059 *          The computed solution vectors.  Each vector is stored as a
00060 *          column of the matrix X.
00061 *
00062 *  LDX     (input) INTEGER
00063 *          The leading dimension of the array X.  LDX >= max(1,N).
00064 *
00065 *  XACT    (input) COMPLEX*16 array, dimension (LDX,NRHS)
00066 *          The exact solution vectors.  Each vector is stored as a
00067 *          column of the matrix XACT.
00068 *
00069 *  LDXACT  (input) INTEGER
00070 *          The leading dimension of the array XACT.  LDXACT >= max(1,N).
00071 *
00072 *  FERR    (input) DOUBLE PRECISION array, dimension (NRHS)
00073 *          The estimated forward error bounds for each solution vector
00074 *          X.  If XTRUE is the true solution, FERR bounds the magnitude
00075 *          of the largest entry in (X - XTRUE) divided by the magnitude
00076 *          of the largest entry in X.
00077 *
00078 *  BERR    (input) DOUBLE PRECISION array, dimension (NRHS)
00079 *          The componentwise relative backward error of each solution
00080 *          vector (i.e., the smallest relative change in any entry of A
00081 *          or B that makes X an exact solution).
00082 *
00083 *  RESLTS  (output) DOUBLE PRECISION array, dimension (2)
00084 *          The maximum over the NRHS solution vectors of the ratios:
00085 *          RESLTS(1) = norm(X - XACT) / ( norm(X) * FERR )
00086 *          RESLTS(2) = BERR / ( NZ*EPS + (*) )
00087 *
00088 *  =====================================================================
00089 *
00090 *     .. Parameters ..
00091       DOUBLE PRECISION   ZERO, ONE
00092       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
00093 *     ..
00094 *     .. Local Scalars ..
00095       INTEGER            I, IMAX, J, K, NZ
00096       DOUBLE PRECISION   AXBI, DIFF, EPS, ERRBND, OVFL, TMP, UNFL, XNORM
00097       COMPLEX*16         ZDUM
00098 *     ..
00099 *     .. External Functions ..
00100       INTEGER            IZAMAX
00101       DOUBLE PRECISION   DLAMCH
00102       EXTERNAL           IZAMAX, DLAMCH
00103 *     ..
00104 *     .. Intrinsic Functions ..
00105       INTRINSIC          ABS, DBLE, DIMAG, MAX, MIN
00106 *     ..
00107 *     .. Statement Functions ..
00108       DOUBLE PRECISION   CABS1
00109 *     ..
00110 *     .. Statement Function definitions ..
00111       CABS1( ZDUM ) = ABS( DBLE( ZDUM ) ) + ABS( DIMAG( ZDUM ) )
00112 *     ..
00113 *     .. Executable Statements ..
00114 *
00115 *     Quick exit if N = 0 or NRHS = 0.
00116 *
00117       IF( N.LE.0 .OR. NRHS.LE.0 ) THEN
00118          RESLTS( 1 ) = ZERO
00119          RESLTS( 2 ) = ZERO
00120          RETURN
00121       END IF
00122 *
00123       EPS = DLAMCH( 'Epsilon' )
00124       UNFL = DLAMCH( 'Safe minimum' )
00125       OVFL = ONE / UNFL
00126       NZ = 4
00127 *
00128 *     Test 1:  Compute the maximum of
00129 *        norm(X - XACT) / ( norm(X) * FERR )
00130 *     over all the vectors X and XACT using the infinity-norm.
00131 *
00132       ERRBND = ZERO
00133       DO 30 J = 1, NRHS
00134          IMAX = IZAMAX( N, X( 1, J ), 1 )
00135          XNORM = MAX( CABS1( X( IMAX, J ) ), UNFL )
00136          DIFF = ZERO
00137          DO 10 I = 1, N
00138             DIFF = MAX( DIFF, CABS1( X( I, J )-XACT( I, J ) ) )
00139    10    CONTINUE
00140 *
00141          IF( XNORM.GT.ONE ) THEN
00142             GO TO 20
00143          ELSE IF( DIFF.LE.OVFL*XNORM ) THEN
00144             GO TO 20
00145          ELSE
00146             ERRBND = ONE / EPS
00147             GO TO 30
00148          END IF
00149 *
00150    20    CONTINUE
00151          IF( DIFF / XNORM.LE.FERR( J ) ) THEN
00152             ERRBND = MAX( ERRBND, ( DIFF / XNORM ) / FERR( J ) )
00153          ELSE
00154             ERRBND = ONE / EPS
00155          END IF
00156    30 CONTINUE
00157       RESLTS( 1 ) = ERRBND
00158 *
00159 *     Test 2:  Compute the maximum of BERR / ( NZ*EPS + (*) ), where
00160 *     (*) = NZ*UNFL / (min_i (abs(A)*abs(X) +abs(b))_i )
00161 *
00162       DO 50 K = 1, NRHS
00163          IF( N.EQ.1 ) THEN
00164             AXBI = CABS1( B( 1, K ) ) + CABS1( D( 1 )*X( 1, K ) )
00165          ELSE
00166             AXBI = CABS1( B( 1, K ) ) + CABS1( D( 1 )*X( 1, K ) ) +
00167      \$             CABS1( E( 1 ) )*CABS1( X( 2, K ) )
00168             DO 40 I = 2, N - 1
00169                TMP = CABS1( B( I, K ) ) + CABS1( E( I-1 ) )*
00170      \$               CABS1( X( I-1, K ) ) + CABS1( D( I )*X( I, K ) ) +
00171      \$               CABS1( E( I ) )*CABS1( X( I+1, K ) )
00172                AXBI = MIN( AXBI, TMP )
00173    40       CONTINUE
00174             TMP = CABS1( B( N, K ) ) + CABS1( E( N-1 ) )*
00175      \$            CABS1( X( N-1, K ) ) + CABS1( D( N )*X( N, K ) )
00176             AXBI = MIN( AXBI, TMP )
00177          END IF
00178          TMP = BERR( K ) / ( NZ*EPS+NZ*UNFL / MAX( AXBI, NZ*UNFL ) )
00179          IF( K.EQ.1 ) THEN
00180             RESLTS( 2 ) = TMP
00181          ELSE
00182             RESLTS( 2 ) = MAX( RESLTS( 2 ), TMP )
00183          END IF
00184    50 CONTINUE
00185 *
00186       RETURN
00187 *
00188 *     End of ZPTT05
00189 *
00190       END
```