001:       SUBROUTINE ZGEMM(TRANSA,TRANSB,M,N,K,ALPHA,A,LDA,B,LDB,BETA,C,LDC)
002: *     .. Scalar Arguments ..
003:       DOUBLE COMPLEX ALPHA,BETA
004:       INTEGER K,LDA,LDB,LDC,M,N
005:       CHARACTER TRANSA,TRANSB
006: *     ..
007: *     .. Array Arguments ..
008:       DOUBLE COMPLEX A(LDA,*),B(LDB,*),C(LDC,*)
009: *     ..
010: *
011: *  Purpose
012: *  =======
013: *
014: *  ZGEMM  performs one of the matrix-matrix operations
015: *
016: *     C := alpha*op( A )*op( B ) + beta*C,
017: *
018: *  where  op( X ) is one of
019: *
020: *     op( X ) = X   or   op( X ) = X'   or   op( X ) = conjg( X' ),
021: *
022: *  alpha and beta are scalars, and A, B and C are matrices, with op( A )
023: *  an m by k matrix,  op( B )  a  k by n matrix and  C an m by n matrix.
024: *
025: *  Arguments
026: *  ==========
027: *
028: *  TRANSA - CHARACTER*1.
029: *           On entry, TRANSA specifies the form of op( A ) to be used in
030: *           the matrix multiplication as follows:
031: *
032: *              TRANSA = 'N' or 'n',  op( A ) = A.
033: *
034: *              TRANSA = 'T' or 't',  op( A ) = A'.
035: *
036: *              TRANSA = 'C' or 'c',  op( A ) = conjg( A' ).
037: *
038: *           Unchanged on exit.
039: *
040: *  TRANSB - CHARACTER*1.
041: *           On entry, TRANSB specifies the form of op( B ) to be used in
042: *           the matrix multiplication as follows:
043: *
044: *              TRANSB = 'N' or 'n',  op( B ) = B.
045: *
046: *              TRANSB = 'T' or 't',  op( B ) = B'.
047: *
048: *              TRANSB = 'C' or 'c',  op( B ) = conjg( B' ).
049: *
050: *           Unchanged on exit.
051: *
052: *  M      - INTEGER.
053: *           On entry,  M  specifies  the number  of rows  of the  matrix
054: *           op( A )  and of the  matrix  C.  M  must  be at least  zero.
055: *           Unchanged on exit.
056: *
057: *  N      - INTEGER.
058: *           On entry,  N  specifies the number  of columns of the matrix
059: *           op( B ) and the number of columns of the matrix C. N must be
060: *           at least zero.
061: *           Unchanged on exit.
062: *
063: *  K      - INTEGER.
064: *           On entry,  K  specifies  the number of columns of the matrix
065: *           op( A ) and the number of rows of the matrix op( B ). K must
066: *           be at least  zero.
067: *           Unchanged on exit.
068: *
069: *  ALPHA  - COMPLEX*16      .
070: *           On entry, ALPHA specifies the scalar alpha.
071: *           Unchanged on exit.
072: *
073: *  A      - COMPLEX*16       array of DIMENSION ( LDA, ka ), where ka is
074: *           k  when  TRANSA = 'N' or 'n',  and is  m  otherwise.
075: *           Before entry with  TRANSA = 'N' or 'n',  the leading  m by k
076: *           part of the array  A  must contain the matrix  A,  otherwise
077: *           the leading  k by m  part of the array  A  must contain  the
078: *           matrix A.
079: *           Unchanged on exit.
080: *
081: *  LDA    - INTEGER.
082: *           On entry, LDA specifies the first dimension of A as declared
083: *           in the calling (sub) program. When  TRANSA = 'N' or 'n' then
084: *           LDA must be at least  max( 1, m ), otherwise  LDA must be at
085: *           least  max( 1, k ).
086: *           Unchanged on exit.
087: *
088: *  B      - COMPLEX*16       array of DIMENSION ( LDB, kb ), where kb is
089: *           n  when  TRANSB = 'N' or 'n',  and is  k  otherwise.
090: *           Before entry with  TRANSB = 'N' or 'n',  the leading  k by n
091: *           part of the array  B  must contain the matrix  B,  otherwise
092: *           the leading  n by k  part of the array  B  must contain  the
093: *           matrix B.
094: *           Unchanged on exit.
095: *
096: *  LDB    - INTEGER.
097: *           On entry, LDB specifies the first dimension of B as declared
098: *           in the calling (sub) program. When  TRANSB = 'N' or 'n' then
099: *           LDB must be at least  max( 1, k ), otherwise  LDB must be at
100: *           least  max( 1, n ).
101: *           Unchanged on exit.
102: *
103: *  BETA   - COMPLEX*16      .
104: *           On entry,  BETA  specifies the scalar  beta.  When  BETA  is
105: *           supplied as zero then C need not be set on input.
106: *           Unchanged on exit.
107: *
108: *  C      - COMPLEX*16       array of DIMENSION ( LDC, n ).
109: *           Before entry, the leading  m by n  part of the array  C must
110: *           contain the matrix  C,  except when  beta  is zero, in which
111: *           case C need not be set on entry.
112: *           On exit, the array  C  is overwritten by the  m by n  matrix
113: *           ( alpha*op( A )*op( B ) + beta*C ).
114: *
115: *  LDC    - INTEGER.
116: *           On entry, LDC specifies the first dimension of C as declared
117: *           in  the  calling  (sub)  program.   LDC  must  be  at  least
118: *           max( 1, m ).
119: *           Unchanged on exit.
120: *
121: *
122: *  Level 3 Blas routine.
123: *
124: *  -- Written on 8-February-1989.
125: *     Jack Dongarra, Argonne National Laboratory.
126: *     Iain Duff, AERE Harwell.
127: *     Jeremy Du Croz, Numerical Algorithms Group Ltd.
128: *     Sven Hammarling, Numerical Algorithms Group Ltd.
129: *
130: *
131: *     .. External Functions ..
132:       LOGICAL LSAME
133:       EXTERNAL LSAME
134: *     ..
135: *     .. External Subroutines ..
136:       EXTERNAL XERBLA
137: *     ..
138: *     .. Intrinsic Functions ..
139:       INTRINSIC DCONJG,MAX
140: *     ..
141: *     .. Local Scalars ..
142:       DOUBLE COMPLEX TEMP
143:       INTEGER I,INFO,J,L,NCOLA,NROWA,NROWB
144:       LOGICAL CONJA,CONJB,NOTA,NOTB
145: *     ..
146: *     .. Parameters ..
147:       DOUBLE COMPLEX ONE
148:       PARAMETER (ONE= (1.0D+0,0.0D+0))
149:       DOUBLE COMPLEX ZERO
150:       PARAMETER (ZERO= (0.0D+0,0.0D+0))
151: *     ..
152: *
153: *     Set  NOTA  and  NOTB  as  true if  A  and  B  respectively are not
154: *     conjugated or transposed, set  CONJA and CONJB  as true if  A  and
155: *     B  respectively are to be  transposed but  not conjugated  and set
156: *     NROWA, NCOLA and  NROWB  as the number of rows and  columns  of  A
157: *     and the number of rows of  B  respectively.
158: *
159:       NOTA = LSAME(TRANSA,'N')
160:       NOTB = LSAME(TRANSB,'N')
161:       CONJA = LSAME(TRANSA,'C')
162:       CONJB = LSAME(TRANSB,'C')
163:       IF (NOTA) THEN
164:           NROWA = M
165:           NCOLA = K
166:       ELSE
167:           NROWA = K
168:           NCOLA = M
169:       END IF
170:       IF (NOTB) THEN
171:           NROWB = K
172:       ELSE
173:           NROWB = N
174:       END IF
175: *
176: *     Test the input parameters.
177: *
178:       INFO = 0
179:       IF ((.NOT.NOTA) .AND. (.NOT.CONJA) .AND.
180:      +    (.NOT.LSAME(TRANSA,'T'))) THEN
181:           INFO = 1
182:       ELSE IF ((.NOT.NOTB) .AND. (.NOT.CONJB) .AND.
183:      +         (.NOT.LSAME(TRANSB,'T'))) THEN
184:           INFO = 2
185:       ELSE IF (M.LT.0) THEN
186:           INFO = 3
187:       ELSE IF (N.LT.0) THEN
188:           INFO = 4
189:       ELSE IF (K.LT.0) THEN
190:           INFO = 5
191:       ELSE IF (LDA.LT.MAX(1,NROWA)) THEN
192:           INFO = 8
193:       ELSE IF (LDB.LT.MAX(1,NROWB)) THEN
194:           INFO = 10
195:       ELSE IF (LDC.LT.MAX(1,M)) THEN
196:           INFO = 13
197:       END IF
198:       IF (INFO.NE.0) THEN
199:           CALL XERBLA('ZGEMM ',INFO)
200:           RETURN
201:       END IF
202: *
203: *     Quick return if possible.
204: *
205:       IF ((M.EQ.0) .OR. (N.EQ.0) .OR.
206:      +    (((ALPHA.EQ.ZERO).OR. (K.EQ.0)).AND. (BETA.EQ.ONE))) RETURN
207: *
208: *     And when  alpha.eq.zero.
209: *
210:       IF (ALPHA.EQ.ZERO) THEN
211:           IF (BETA.EQ.ZERO) THEN
212:               DO 20 J = 1,N
213:                   DO 10 I = 1,M
214:                       C(I,J) = ZERO
215:    10             CONTINUE
216:    20         CONTINUE
217:           ELSE
218:               DO 40 J = 1,N
219:                   DO 30 I = 1,M
220:                       C(I,J) = BETA*C(I,J)
221:    30             CONTINUE
222:    40         CONTINUE
223:           END IF
224:           RETURN
225:       END IF
226: *
227: *     Start the operations.
228: *
229:       IF (NOTB) THEN
230:           IF (NOTA) THEN
231: *
232: *           Form  C := alpha*A*B + beta*C.
233: *
234:               DO 90 J = 1,N
235:                   IF (BETA.EQ.ZERO) THEN
236:                       DO 50 I = 1,M
237:                           C(I,J) = ZERO
238:    50                 CONTINUE
239:                   ELSE IF (BETA.NE.ONE) THEN
240:                       DO 60 I = 1,M
241:                           C(I,J) = BETA*C(I,J)
242:    60                 CONTINUE
243:                   END IF
244:                   DO 80 L = 1,K
245:                       IF (B(L,J).NE.ZERO) THEN
246:                           TEMP = ALPHA*B(L,J)
247:                           DO 70 I = 1,M
248:                               C(I,J) = C(I,J) + TEMP*A(I,L)
249:    70                     CONTINUE
250:                       END IF
251:    80             CONTINUE
252:    90         CONTINUE
253:           ELSE IF (CONJA) THEN
254: *
255: *           Form  C := alpha*conjg( A' )*B + beta*C.
256: *
257:               DO 120 J = 1,N
258:                   DO 110 I = 1,M
259:                       TEMP = ZERO
260:                       DO 100 L = 1,K
261:                           TEMP = TEMP + DCONJG(A(L,I))*B(L,J)
262:   100                 CONTINUE
263:                       IF (BETA.EQ.ZERO) THEN
264:                           C(I,J) = ALPHA*TEMP
265:                       ELSE
266:                           C(I,J) = ALPHA*TEMP + BETA*C(I,J)
267:                       END IF
268:   110             CONTINUE
269:   120         CONTINUE
270:           ELSE
271: *
272: *           Form  C := alpha*A'*B + beta*C
273: *
274:               DO 150 J = 1,N
275:                   DO 140 I = 1,M
276:                       TEMP = ZERO
277:                       DO 130 L = 1,K
278:                           TEMP = TEMP + A(L,I)*B(L,J)
279:   130                 CONTINUE
280:                       IF (BETA.EQ.ZERO) THEN
281:                           C(I,J) = ALPHA*TEMP
282:                       ELSE
283:                           C(I,J) = ALPHA*TEMP + BETA*C(I,J)
284:                       END IF
285:   140             CONTINUE
286:   150         CONTINUE
287:           END IF
288:       ELSE IF (NOTA) THEN
289:           IF (CONJB) THEN
290: *
291: *           Form  C := alpha*A*conjg( B' ) + beta*C.
292: *
293:               DO 200 J = 1,N
294:                   IF (BETA.EQ.ZERO) THEN
295:                       DO 160 I = 1,M
296:                           C(I,J) = ZERO
297:   160                 CONTINUE
298:                   ELSE IF (BETA.NE.ONE) THEN
299:                       DO 170 I = 1,M
300:                           C(I,J) = BETA*C(I,J)
301:   170                 CONTINUE
302:                   END IF
303:                   DO 190 L = 1,K
304:                       IF (B(J,L).NE.ZERO) THEN
305:                           TEMP = ALPHA*DCONJG(B(J,L))
306:                           DO 180 I = 1,M
307:                               C(I,J) = C(I,J) + TEMP*A(I,L)
308:   180                     CONTINUE
309:                       END IF
310:   190             CONTINUE
311:   200         CONTINUE
312:           ELSE
313: *
314: *           Form  C := alpha*A*B'          + beta*C
315: *
316:               DO 250 J = 1,N
317:                   IF (BETA.EQ.ZERO) THEN
318:                       DO 210 I = 1,M
319:                           C(I,J) = ZERO
320:   210                 CONTINUE
321:                   ELSE IF (BETA.NE.ONE) THEN
322:                       DO 220 I = 1,M
323:                           C(I,J) = BETA*C(I,J)
324:   220                 CONTINUE
325:                   END IF
326:                   DO 240 L = 1,K
327:                       IF (B(J,L).NE.ZERO) THEN
328:                           TEMP = ALPHA*B(J,L)
329:                           DO 230 I = 1,M
330:                               C(I,J) = C(I,J) + TEMP*A(I,L)
331:   230                     CONTINUE
332:                       END IF
333:   240             CONTINUE
334:   250         CONTINUE
335:           END IF
336:       ELSE IF (CONJA) THEN
337:           IF (CONJB) THEN
338: *
339: *           Form  C := alpha*conjg( A' )*conjg( B' ) + beta*C.
340: *
341:               DO 280 J = 1,N
342:                   DO 270 I = 1,M
343:                       TEMP = ZERO
344:                       DO 260 L = 1,K
345:                           TEMP = TEMP + DCONJG(A(L,I))*DCONJG(B(J,L))
346:   260                 CONTINUE
347:                       IF (BETA.EQ.ZERO) THEN
348:                           C(I,J) = ALPHA*TEMP
349:                       ELSE
350:                           C(I,J) = ALPHA*TEMP + BETA*C(I,J)
351:                       END IF
352:   270             CONTINUE
353:   280         CONTINUE
354:           ELSE
355: *
356: *           Form  C := alpha*conjg( A' )*B' + beta*C
357: *
358:               DO 310 J = 1,N
359:                   DO 300 I = 1,M
360:                       TEMP = ZERO
361:                       DO 290 L = 1,K
362:                           TEMP = TEMP + DCONJG(A(L,I))*B(J,L)
363:   290                 CONTINUE
364:                       IF (BETA.EQ.ZERO) THEN
365:                           C(I,J) = ALPHA*TEMP
366:                       ELSE
367:                           C(I,J) = ALPHA*TEMP + BETA*C(I,J)
368:                       END IF
369:   300             CONTINUE
370:   310         CONTINUE
371:           END IF
372:       ELSE
373:           IF (CONJB) THEN
374: *
375: *           Form  C := alpha*A'*conjg( B' ) + beta*C
376: *
377:               DO 340 J = 1,N
378:                   DO 330 I = 1,M
379:                       TEMP = ZERO
380:                       DO 320 L = 1,K
381:                           TEMP = TEMP + A(L,I)*DCONJG(B(J,L))
382:   320                 CONTINUE
383:                       IF (BETA.EQ.ZERO) THEN
384:                           C(I,J) = ALPHA*TEMP
385:                       ELSE
386:                           C(I,J) = ALPHA*TEMP + BETA*C(I,J)
387:                       END IF
388:   330             CONTINUE
389:   340         CONTINUE
390:           ELSE
391: *
392: *           Form  C := alpha*A'*B' + beta*C
393: *
394:               DO 370 J = 1,N
395:                   DO 360 I = 1,M
396:                       TEMP = ZERO
397:                       DO 350 L = 1,K
398:                           TEMP = TEMP + A(L,I)*B(J,L)
399:   350                 CONTINUE
400:                       IF (BETA.EQ.ZERO) THEN
401:                           C(I,J) = ALPHA*TEMP
402:                       ELSE
403:                           C(I,J) = ALPHA*TEMP + BETA*C(I,J)
404:                       END IF
405:   360             CONTINUE
406:   370         CONTINUE
407:           END IF
408:       END IF
409: *
410:       RETURN
411: *
412: *     End of ZGEMM .
413: *
414:       END
415: