#include "blaswrap.h" /* -- translated by f2c (version 19990503). You must link the resulting object file with the libraries: -lf2c -lm (in that order) */ #include "f2c.h" /* Table of constant values */ static integer c__2 = 2; static integer c__0 = 0; static integer c__1 = 1; /* Subroutine */ int ctimgb_(char *line, integer *nm, integer *mval, integer * nk, integer *kval, integer *nns, integer *nsval, integer *nnb, integer *nbval, integer *nlda, integer *ldaval, real *timmin, complex *a, complex *b, integer *iwork, real *reslts, integer *ldr1, integer * ldr2, integer *ldr3, integer *nout, ftnlen line_len) { /* Initialized data */ static char subnam[6*2] = "CGBTRF" "CGBTRS"; /* Format strings */ static char fmt_9999[] = "(1x,a6,\002 timing run not attempted\002,/)"; static char fmt_9998[] = "(/\002 *** Speed of \002,a6,\002 in megaflops " "***\002)"; static char fmt_9997[] = "(5x,\002with LDA = \002,i5)"; static char fmt_9996[] = "(5x,\002line \002,i2,\002 with LDA = \002,i5)"; static char fmt_9995[] = "(/5x,a6,\002 with M =\002,i6,/)"; /* System generated locals */ integer reslts_dim1, reslts_dim2, reslts_dim3, reslts_offset, i__1, i__2, i__3, i__4, i__5, i__6, i__7; /* Builtin functions Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen); integer s_wsfe(cilist *), do_fio(integer *, char *, ftnlen), e_wsfe(void), s_cmp(char *, char *, ftnlen, ftnlen); /* Local variables */ static integer ilda, info; static char path[3]; static real time; static integer isub, nrhs, i__, k, m, n; static char cname[6]; extern doublereal sopgb_(char *, integer *, integer *, integer *, integer *, integer *), sopla_(char *, integer *, integer *, integer *, integer *, integer *); static real s1, s2; static integer ic, nb, ik, im, kl, ku; extern /* Subroutine */ int cgbtrf_(integer *, integer *, integer *, integer *, complex *, integer *, integer *, integer *), atimck_( integer *, char *, integer *, integer *, integer *, integer *, integer *, integer *, ftnlen); extern doublereal second_(void); extern /* Subroutine */ int ctimmg_(integer *, integer *, integer *, complex *, integer *, integer *, integer *), atimin_(char *, char *, integer *, char *, logical *, integer *, integer *, ftnlen, ftnlen, ftnlen), cgbtrs_(char *, integer *, integer *, integer *, integer *, complex *, integer *, integer *, complex *, integer *, integer *), xlaenv_(integer *, integer *); extern doublereal smflop_(real *, real *, integer *); static real untime; static logical timsub[2]; extern /* Subroutine */ int sprtbl_(char *, char *, integer *, integer *, integer *, integer *, integer *, real *, integer *, integer *, integer *, ftnlen, ftnlen); static integer lda, ldb, icl, inb; static real ops; /* Fortran I/O blocks */ static cilist io___6 = { 0, 0, 0, fmt_9999, 0 }; static cilist io___29 = { 0, 0, 0, fmt_9998, 0 }; static cilist io___30 = { 0, 0, 0, fmt_9997, 0 }; static cilist io___31 = { 0, 0, 0, fmt_9996, 0 }; static cilist io___32 = { 0, 0, 0, fmt_9995, 0 }; #define subnam_ref(a_0,a_1) &subnam[(a_1)*6 + a_0 - 6] #define reslts_ref(a_1,a_2,a_3,a_4) reslts[(((a_4)*reslts_dim3 + (a_3))*\ reslts_dim2 + (a_2))*reslts_dim1 + a_1] /* -- LAPACK timing routine (version 3.0) -- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., Courant Institute, Argonne National Lab, and Rice University March 31, 1993 Purpose ======= CTIMGB times CGBTRF and -TRS. Arguments ========= LINE (input) CHARACTER*80 The input line that requested this routine. The first six characters contain either the name of a subroutine or a generic path name. The remaining characters may be used to specify the individual routines to be timed. See ATIMIN for a full description of the format of the input line. NM (input) INTEGER The number of values of M contained in the vector MVAL. MVAL (input) INTEGER array, dimension (NM) The values of the matrix size M. NK (input) INTEGER The number of values of K contained in the vector KVAL. KVAL (input) INTEGER array, dimension (NK) The values of the band width K. NNS (input) INTEGER The number of values of NRHS contained in the vector NSVAL. NSVAL (input) INTEGER array, dimension (NNS) The values of the number of right hand sides NRHS. NNB (input) INTEGER The number of values of NB contained in the vector NBVAL. NBVAL (input) INTEGER array, dimension (NNB) The values of the blocksize NB. NLDA (input) INTEGER The number of values of LDA contained in the vector LDAVAL. LDAVAL (input) INTEGER array, dimension (NLDA) The values of the leading dimension of the array A. TIMMIN (input) REAL The minimum time a subroutine will be timed. A (workspace) COMPLEX array, dimension (LDAMAX*NMAX) where LDAMAX and NMAX are the maximum values permitted for LDA and N. B (workspace) COMPLEX array, dimension (LDAMAX*NMAX) IWORK (workspace) INTEGER array, dimension (NMAX) RESLTS (output) REAL array, dimension (LDR1,LDR2,LDR3,NSUBS) The timing results for each subroutine over the relevant values of N, K, NB, and LDA. LDR1 (input) INTEGER The first dimension of RESLTS. LDR1 >= max(4,NNB). LDR2 (input) INTEGER The second dimension of RESLTS. LDR2 >= max(1,NK). LDR3 (input) INTEGER The third dimension of RESLTS. LDR3 >= max(1,NLDA). NOUT (input) INTEGER The unit number for output. ===================================================================== Parameter adjustments */ --mval; --kval; --nsval; --nbval; --ldaval; --a; --b; --iwork; reslts_dim1 = *ldr1; reslts_dim2 = *ldr2; reslts_dim3 = *ldr3; reslts_offset = 1 + reslts_dim1 * (1 + reslts_dim2 * (1 + reslts_dim3 * 1) ); reslts -= reslts_offset; /* Function Body Extract the timing request from the input line. */ s_copy(path, "Complex precision", (ftnlen)1, (ftnlen)17); s_copy(path + 1, "GB", (ftnlen)2, (ftnlen)2); atimin_(path, line, &c__2, subnam, timsub, nout, &info, (ftnlen)3, ( ftnlen)80, (ftnlen)6); if (info != 0) { goto L120; } /* Check that 3*K+1 <= LDA for the input values. */ s_copy(cname, line, (ftnlen)6, (ftnlen)6); atimck_(&c__0, cname, nk, &kval[1], nlda, &ldaval[1], nout, &info, ( ftnlen)6); if (info > 0) { io___6.ciunit = *nout; s_wsfe(&io___6); do_fio(&c__1, cname, (ftnlen)6); e_wsfe(); goto L120; } /* Do for each value of the matrix size M: */ i__1 = *nm; for (im = 1; im <= i__1; ++im) { m = mval[im]; n = m; /* Do for each value of LDA: */ i__2 = *nlda; for (ilda = 1; ilda <= i__2; ++ilda) { lda = ldaval[ilda]; /* Do for each value of the band width K: */ i__3 = *nk; for (ik = 1; ik <= i__3; ++ik) { k = kval[ik]; /* Computing MAX Computing MIN */ i__6 = k, i__7 = m - 1; i__4 = 0, i__5 = min(i__6,i__7); kl = max(i__4,i__5); /* Computing MAX Computing MIN */ i__6 = k, i__7 = n - 1; i__4 = 0, i__5 = min(i__6,i__7); ku = max(i__4,i__5); /* Time CGBTRF */ if (timsub[0]) { /* Do for each value of NB in NBVAL. Only CGBTRF is timed in this loop since the other routines are independent of NB. */ i__4 = *nnb; for (inb = 1; inb <= i__4; ++inb) { nb = nbval[inb]; xlaenv_(&c__1, &nb); ic = 0; ctimmg_(&c__2, &m, &n, &a[1], &lda, &kl, &ku); s1 = second_(); L10: cgbtrf_(&m, &n, &kl, &ku, &a[1], &lda, &iwork[1], & info); s2 = second_(); time = s2 - s1; ++ic; if (time < *timmin) { ctimmg_(&c__2, &m, &n, &a[1], &lda, &kl, &ku); goto L10; } /* Subtract the time used in CTIMMG. */ icl = 1; s1 = second_(); L20: s2 = second_(); untime = s2 - s1; ++icl; if (icl <= ic) { ctimmg_(&c__2, &m, &n, &a[1], &lda, &kl, &ku); goto L20; } time = (time - untime) / (real) ic; ops = sopgb_("CGBTRF", &m, &n, &kl, &ku, &iwork[1]); reslts_ref(inb, ik, ilda, 1) = smflop_(&ops, &time, & info); /* L30: */ } } else { ic = 0; ctimmg_(&c__2, &m, &n, &a[1], &lda, &kl, &ku); } /* Generate another matrix and factor it using CGBTRF so that the factored form can be used in timing the other routines. */ nb = 1; xlaenv_(&c__1, &nb); if (ic != 1) { cgbtrf_(&m, &n, &kl, &ku, &a[1], &lda, &iwork[1], &info); } /* Time CGBTRS */ if (timsub[1]) { i__4 = *nns; for (i__ = 1; i__ <= i__4; ++i__) { nrhs = nsval[i__]; ldb = n; ic = 0; ctimmg_(&c__0, &n, &nrhs, &b[1], &ldb, &c__0, &c__0); s1 = second_(); L40: cgbtrs_("No transpose", &n, &kl, &ku, &nrhs, &a[1], & lda, &iwork[1], &b[1], &ldb, &info); s2 = second_(); time = s2 - s1; ++ic; if (time < *timmin) { ctimmg_(&c__0, &n, &nrhs, &b[1], &ldb, &c__0, & c__0); goto L40; } /* Subtract the time used in CTIMMG. */ icl = 1; s1 = second_(); L50: s2 = second_(); untime = s2 - s1; ++icl; if (icl <= ic) { ctimmg_(&c__0, &n, &nrhs, &b[1], &ldb, &c__0, & c__0); goto L50; } time = (time - untime) / (real) ic; ops = sopla_("CGBTRS", &n, &nrhs, &kl, &ku, &c__0); reslts_ref(i__, ik, ilda, 2) = smflop_(&ops, &time, & info); /* L60: */ } } /* L70: */ } /* L80: */ } /* Print a table of results for each routine */ for (isub = 1; isub <= 2; ++isub) { if (! timsub[isub - 1]) { goto L100; } /* Print header for routine names. */ if (im == 1 || s_cmp(cname, "CGB ", (ftnlen)6, (ftnlen)6) == 0) { io___29.ciunit = *nout; s_wsfe(&io___29); do_fio(&c__1, subnam_ref(0, isub), (ftnlen)6); e_wsfe(); if (*nlda == 1) { io___30.ciunit = *nout; s_wsfe(&io___30); do_fio(&c__1, (char *)&ldaval[1], (ftnlen)sizeof(integer)) ; e_wsfe(); } else { i__2 = *nlda; for (i__ = 1; i__ <= i__2; ++i__) { io___31.ciunit = *nout; s_wsfe(&io___31); do_fio(&c__1, (char *)&i__, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&ldaval[i__], (ftnlen)sizeof( integer)); e_wsfe(); /* L90: */ } } } io___32.ciunit = *nout; s_wsfe(&io___32); do_fio(&c__1, subnam_ref(0, isub), (ftnlen)6); do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)); e_wsfe(); if (isub == 1) { sprtbl_("NB", "K", nnb, &nbval[1], nk, &kval[1], nlda, & reslts_ref(1, 1, 1, 1), ldr1, ldr2, nout, (ftnlen)2, ( ftnlen)1); } else if (isub == 2) { sprtbl_("NRHS", "K", nns, &nsval[1], nk, &kval[1], nlda, & reslts_ref(1, 1, 1, 2), ldr1, ldr2, nout, (ftnlen)4, ( ftnlen)1); } L100: ; } /* L110: */ } L120: return 0; /* End of CTIMGB */ } /* ctimgb_ */ #undef reslts_ref #undef subnam_ref