#include "blaswrap.h" /* -- translated by f2c (version 19990503). You must link the resulting object file with the libraries: -lf2c -lm (in that order) */ #include "f2c.h" /* Common Block Declarations */ struct { doublereal ops, itcnt; } latime_; #define latime_1 latime_ /* Table of constant values */ static doublecomplex c_b1 = {1.,0.}; static doublecomplex c_b2 = {2.,0.}; static integer c__17 = 17; static integer c__1 = 1; static integer c__9 = 9; static integer c__25 = 25; static doublereal c_b27 = 1.; static integer c__6 = 6; static doublereal c_b32 = 0.; static integer c__0 = 0; static integer c__5 = 5; static integer c__2 = 2; static integer c__3 = 3; static integer c__4 = 4; static integer c__20 = 20; static integer c__10 = 10; static integer c__21 = 21; /* Subroutine */ int ztim26_(char *line, integer *nsizes, integer *nn, integer *mm, integer *ntypes, logical *dotype, integer *nparms, integer *nnb, integer *ldas, doublereal *timmin, integer *nout, integer *iseed, doublecomplex *a, doublecomplex *h__, doublecomplex * u, doublecomplex *vt, doublereal *d__, doublecomplex *dc, doublereal * e, doublecomplex *ec, doublecomplex *taup, doublecomplex *tauq, doublecomplex *work, integer *lwork, doublereal *rwork, integer * iwork, logical *llwork, doublereal *times, integer *ldt1, integer * ldt2, integer *ldt3, doublereal *opcnts, integer *ldo1, integer *ldo2, integer *ldo3, integer *info, ftnlen line_len) { /* Initialized data */ static char subnam[9*17] = "ZGEBRD " "ZBDSQR " "ZBDSQR(L)" "ZBDSQR(R)" "ZBDSQR(B)" "ZBDSQR(V)" "LAPSVD " "LAPSVD(l)" "LAPSVD(L)" "LAPSVD(R)" "LAPSVD(B)" "ZGESDD(B)" "LINSVD " "LINSVD(l)" "LIN" "SVD(L)" "LINSVD(R)" "LINSVD(B)"; static integer inparm[17] = { 2,1,1,1,1,1,2,2,2,2,2,2,1,1,1,1,1 }; static char pnames[4*2] = "LDA " "NB "; static integer kmode[3] = { 4,3,1 }; /* Format strings */ static char fmt_9999[] = "(1x,a,\002 timing run not attempted\002,/)"; static char fmt_9998[] = "(\002 ZTIM26: \002,a,\002 returned INFO=\002,i" "6,\002.\002,/9x,\002M=\002,i6,\002, N=\002,i6,\002, ITYPE=\002,i" "6,\002, IPAR=\002,i6,\002, \002,\002 ISEED=(\002," "4(i5,\002,\002),i5,\002)\002)"; /* System generated locals */ integer opcnts_dim1, opcnts_dim2, opcnts_dim3, opcnts_offset, times_dim1, times_dim2, times_dim3, times_offset, i__1, i__2, i__3, i__4, i__5, i__6, i__7; doublereal d__1; doublecomplex z__1, z__2; /* Builtin functions */ integer s_wsfe(cilist *), do_fio(integer *, char *, ftnlen), e_wsfe(void); double log(doublereal), exp(doublereal); /* Local variables */ static integer ipar; static doublereal time; static integer jdum[1], isub; static char uplo[1]; static integer j, m, n, imode; extern doublereal dopla_(char *, integer *, integer *, integer *, integer *, integer *); static integer iinfo; static doublereal conds; static integer minmn; extern /* Subroutine */ int dcopy_(integer *, doublereal *, integer *, doublereal *, integer *), zsvdc_(doublecomplex *, integer *, integer *, integer *, doublecomplex *, doublecomplex *, doublecomplex *, integer *, doublecomplex *, integer *, doublecomplex *, integer *, integer *); static integer itype, j1, j2, j3, j4; static doublereal s1, s2; extern doublereal dopla2_(char *, char *, integer *, integer *, integer *, integer *, integer *); static integer ic, nb, in; extern doublereal dlamch_(char *); static integer ku; extern doublereal dsecnd_(void), dlarnd_(integer *, integer *); extern /* Subroutine */ int zgebrd_(integer *, integer *, doublecomplex *, integer *, doublereal *, doublereal *, doublecomplex *, doublecomplex *, doublecomplex *, integer *, integer *); static integer ioldsd[4]; extern /* Subroutine */ int zgesdd_(char *, integer *, integer *, doublecomplex *, integer *, doublereal *, doublecomplex *, integer *, doublecomplex *, integer *, doublecomplex *, integer *, doublereal *, integer *, integer *), atimin_(char *, char *, integer *, char *, logical *, integer *, integer *, ftnlen, ftnlen, ftnlen); extern /* Double Complex */ VOID zlarnd_(doublecomplex *, integer *, integer *); static logical trnbrd, runbrd; static integer lastnl; extern /* Subroutine */ int xlaenv_(integer *, integer *); static doublereal untime; extern /* Subroutine */ int dprtbv_(char *, integer *, logical *, integer *, integer *, integer *, integer *, char *, integer *, integer *, integer *, doublereal *, integer *, integer *, doublereal *, integer *, integer *, doublereal *, logical *, integer *, ftnlen, ftnlen); static logical timsub[17]; extern /* Subroutine */ int zbdsqr_(char *, integer *, integer *, integer *, integer *, doublereal *, doublereal *, doublecomplex *, integer *, doublecomplex *, integer *, doublecomplex *, integer *, doublereal *, integer *), zlacpy_(char *, integer *, integer *, doublecomplex *, integer *, doublecomplex *, integer *), zlaset_(char *, integer *, integer *, doublecomplex *, doublecomplex *, doublecomplex *, integer *), zlatmr_( integer *, integer *, char *, integer *, char *, doublecomplex *, integer *, doublereal *, doublecomplex *, char *, char *, doublecomplex *, integer *, doublereal *, doublecomplex *, integer *, doublereal *, char *, integer *, integer *, integer *, doublereal *, doublereal *, char *, doublecomplex *, integer *, integer *, integer *), zlatms_(integer *, integer *, char *, integer *, char *, doublereal *, integer *, doublereal *, doublereal *, integer *, integer *, char *, doublecomplex *, integer *, doublecomplex *, integer *); static doublereal ulpinv; extern /* Subroutine */ int zungbr_(char *, integer *, integer *, integer *, doublecomplex *, integer *, doublecomplex *, doublecomplex *, integer *, integer *); static integer mtypes, lda; static doublereal ulp; static integer kvt; /* Fortran I/O blocks */ static cilist io___7 = { 0, 0, 0, fmt_9999, 0 }; static cilist io___9 = { 0, 0, 0, fmt_9999, 0 }; static cilist io___36 = { 0, 0, 0, fmt_9998, 0 }; static cilist io___40 = { 0, 0, 0, fmt_9998, 0 }; static cilist io___42 = { 0, 0, 0, fmt_9998, 0 }; static cilist io___43 = { 0, 0, 0, fmt_9998, 0 }; static cilist io___44 = { 0, 0, 0, fmt_9998, 0 }; static cilist io___45 = { 0, 0, 0, fmt_9998, 0 }; static cilist io___46 = { 0, 0, 0, fmt_9998, 0 }; static cilist io___47 = { 0, 0, 0, fmt_9998, 0 }; static cilist io___48 = { 0, 0, 0, fmt_9998, 0 }; static cilist io___49 = { 0, 0, 0, fmt_9998, 0 }; static cilist io___50 = { 0, 0, 0, fmt_9998, 0 }; static cilist io___51 = { 0, 0, 0, fmt_9998, 0 }; static cilist io___52 = { 0, 0, 0, fmt_9998, 0 }; static cilist io___53 = { 0, 0, 0, fmt_9998, 0 }; static cilist io___54 = { 0, 0, 0, fmt_9998, 0 }; static cilist io___55 = { 0, 0, 0, fmt_9998, 0 }; static cilist io___56 = { 0, 0, 0, fmt_9998, 0 }; static cilist io___57 = { 0, 0, 0, fmt_9998, 0 }; #define times_ref(a_1,a_2,a_3,a_4) times[(((a_4)*times_dim3 + (a_3))*\ times_dim2 + (a_2))*times_dim1 + a_1] #define subnam_ref(a_0,a_1) &subnam[(a_1)*9 + a_0 - 9] #define opcnts_ref(a_1,a_2,a_3,a_4) opcnts[(((a_4)*opcnts_dim3 + (a_3))*\ opcnts_dim2 + (a_2))*opcnts_dim1 + a_1] /* -- LAPACK timing routine (version 3.0) -- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., Courant Institute, Argonne National Lab, and Rice University June 30, 1999 Purpose ======= ZTIM26 times the LAPACK routines for the COMPLEX*16 singular value decomposition. For each N value in NN(1:NSIZES), M value in MM(1:NSIZES), and .TRUE. value in DOTYPE(1:NTYPES), a matrix will be generated and used to test the selected routines. Thus, NSIZES*(number of .TRUE. values in DOTYPE) matrices will be generated. Arguments ========= LINE (input) CHARACTER*80 On entry, LINE contains the input line which requested this routine. This line may contain a subroutine name, such as ZGEBRD, indicating that only routine CGEBRD will be timed, or it may contain a generic name, such as ZBD. In this case, the rest of the line is scanned for the first 11 non-blank characters, corresponding to the eleven combinations of subroutine and options: LAPACK: 1: ZGEBRD (labeled ZGEBRD in the output) 2: ZBDSQR (singular values only) (labeled ZBDSQR in the output) 3: ZBDSQR (singular values and left singular vectors; assume original matrix M by N) (labeled ZBDSQR(L) in the output) 4: ZBDSQR (singular values and right singular vectors; assume original matrix M by N) (labeled ZBDSQR(R) in the output) 5: ZBDSQR (singular values and left and right singular vectors; assume original matrix M by N) (labeled ZBDSQR(B) in the output) 6: ZBDSQR (singular value and multiply square MIN(M,N) matrix by transpose of left singular vectors) (labeled ZBDSQR(V) in the output) 7: ZGEBRD+ZBDSQR (singular values only) (labeled LAPSVD in the output) 8: ZGEBRD+ZUNGBR+ZBDSQR(L) (singular values and min(M,N) left singular vectors) (labeled LAPSVD(l) in the output) 9: ZGEBRD+ZUNGBR+ZBDSQR(L) (singular values and M left singular vectors) (labeled LAPSVD(L) in the output) 10: ZGEBRD+ZUNGBR+ZBDSQR(R) (singular values and N right singular vectors) (labeled LAPSVD(R) in the output) 11: ZGEBRD+ZUNGBR+ZBDSQR(B) (singular values and min(M,N) left singular vectors and N right singular vectors) (labeled LAPSVD(B) in the output) 12: ZGESDD (singular values and min(M,N) left singular vectors and N right singular vectors if M>=N, singular values and M left singular vectors and min(M,N) right singular vectors otherwise.) (labeled ZGESDD(B) in the output) LINPACK: 13: ZSVDC (singular values only) (comparable to 7 above) (labeled LINSVD in the output) 14: ZSVDC (singular values and min(M,N) left singular vectors) (comparable to 8 above) (labeled LINSVD(l) in the output) 15: ZSVDC (singular values and M left singular vectors) (comparable to 9 above) (labeled LINSVD(L) in the output) 16: ZSVDC (singular values and N right singular vectors) (comparable to 10 above) (labeled LINSVD(R) in the output) 17: ZSVDC (singular values and min(M,N) left singular vectors and N right singular vectors) (comparable to 11 above) (labeled LINSVD(B) in the output) If a character is 'T' or 't', the corresponding routine in this path is timed. If the entire line is blank, all the routines in the path are timed. NSIZES (input) INTEGER The number of values of N contained in the vector NN. NN (input) INTEGER array, dimension( NSIZES ) The numbers of columns of the matrices to be tested. For each N value in the array NN, and each .TRUE. value in DOTYPE, a matrix A will be generated and used to test the routines. MM (input) INTEGER array, dimension( NSIZES ) The numbers of rows of the matrices to be tested. For each M value in the array MM, and each .TRUE. value in DOTYPE, a matrix A will be generated and used to test the routines. NTYPES (input) INTEGER The number of types in DOTYPE. Only the first MAXTYP elements will be examined. Exception: if NSIZES=1 and NTYPES=MAXTYP+1, and DOTYPE=MAXTYP*f,t, then the input value of A will be used. DOTYPE (input) LOGICAL If DOTYPE(j) is .TRUE., then a matrix of type j will be generated as follows: j=1: A = U*D*V where U and V are random unitary matrices and D has evenly spaced entries 1,...,ULP with random signs on the diagonal j=2: A = U*D*V where U and V are random unitary matrices and D has geometrically spaced entries 1,...,ULP with random signs on the diagonal j=3: A = U*D*V where U and V are random unitary matrices and D has "clustered" entries 1,ULP,...,ULP with random signs on the diagonal j=4: A contains uniform complex random numbers with components from [-1,1] j=5: A is a special nearly bidiagonal matrix, where the upper bidiagonal entries are exp(-2*r*log(ULP)) where r is a uniform random number from [0,1], and the nonbidiagonal entries are r*ULP, where r is a uniform complex random number with components from [0,1] NPARMS (input) INTEGER The number of values in each of the arrays NNB and LDAS. For each matrix A generated according to NN, MM and DOTYPE, tests will be run with (NB,,LDA)= (NNB(1), LDAS(1)),..., (NNB(NPARMS), LDAS(NPARMS)). NNB (input) INTEGER array, dimension( NPARMS ) The values of the blocksize ("NB") to be tested. LDAS (input) INTEGER array, dimension( NPARMS ) The values of LDA, the leading dimension of all matrices, to be tested. TIMMIN (input) DOUBLE PRECISION The minimum time a subroutine will be timed. NOUT (input) INTEGER If NOUT > 0 then NOUT specifies the unit number on which the output will be printed. If NOUT <= 0, no output is printed. ISEED (input/output) INTEGER array, dimension( 4 ) The random seed used by the random number generator, used by the test matrix generator. It is used and updated on each call to ZTIM26. A (workspace) COMPLEX*16 array, dimension( max(NN)*max(LDAS) ) During the testing of ZGEBRD, the original dense matrix. H (workspace) COMPLEX*16 array, dimension( max(NN)*max(LDAS) ) The packed unitary matrices reducing A to bidiagonal form. U (workspace) COMPLEX*16 array, dimension( max(NN,MM)*max(LDAS) ) The left singular vectors of the original matrix. VT (workspace) COMPLEX*16 array, dimension( max(NN,MM)*max(LDAS) ) The right singular vectors of the original matrix. D (workspace) DOUBLE PRECISION array, dimension( max(NN,MM) ) Diagonal entries of bidiagonal matrix to which A is reduced. DC (workspace) COMPLEX*16 array, dimension( max(NN,MM) ) Diagonal entries of bidiagonal matrix to which A is reduced. May be equivalence with D in calling routine. E (workspace) DOUBLE PRECISION array, dimension( max(NN,MM) ) Offdiagonal entries of bidiagonal matrix to which A is reduced. EC (workspace) COMPLEX*16 array, dimension( max(NN,MM) ) Offdiagonal entries of bidiagonal matrix to which A is reduced. May be equivalence with E in calling routine. TAUP (workspace) COMPLEX*16 array, dimension( max(NN,MM) ) More information used with H. TAUQ (workspace) COMPLEX*16 array, dimension( max(NN,MM) ) More information used with H. WORK (workspace) COMPLEX*16 array, dimension( LWORK ) LWORK (input) INTEGER Number of elements in WORK and RWORK. Must be at least MAX(6*MIN(M,N),3*MAX(M,N),NSIZES*NPARMS*NTYPES) RWORK (workspace) DOUBLE PRECISION array, dimension( LWORK ) May be equivalenced to WORK in calling routine. IWORK (workspace) INTEGER array, dimension at least 8*min(M,N). LLWORK (workspace) LOGICAL array, dimension( NPARMS ), TIMES (output) DOUBLE PRECISION array, dimension (LDT1,LDT2,LDT3,NSUBS) TIMES(i,j,k,l) will be set to the run time (in seconds) for subroutine/path l, with N=NN(k), M=MM(k), matrix type j, LDA=LDAS(i), and NBLOCK=NNB(i). LDT1 (input) INTEGER The first dimension of TIMES. LDT1 >= min( 1, NPARMS ). LDT2 (input) INTEGER The second dimension of TIMES. LDT2 >= min( 1, NTYPES ). LDT3 (input) INTEGER The third dimension of TIMES. LDT3 >= min( 1, NSIZES ). OPCNTS (output) DOUBLE PRECISION array, dimension (LDO1,LDO2,LDO3,NSUBS) OPCNTS(i,j,k,l) will be set to the number of floating-point operations executed by subroutine/path l, with N=NN(k), M=MM(k), matrix type j, LDA=LDAS(i), and NBLOCK=NNB(i). LDO1 (input) INTEGER The first dimension of OPCNTS. LDO1 >= min( 1, NPARMS ). LDO2 (input) INTEGER The second dimension of OPCNTS. LDO2 >= min( 1, NTYPES ). LDO3 (input) INTEGER The third dimension of OPCNTS. LDO3 >= min( 1, NSIZES ). INFO (output) INTEGER Error flag. It will be set to zero if no error occurred. ===================================================================== Parameter adjustments */ --nn; --mm; --dotype; --nnb; --ldas; --iseed; --a; --h__; --u; --vt; --d__; --dc; --e; --ec; --taup; --tauq; --work; --rwork; --iwork; --llwork; times_dim1 = *ldt1; times_dim2 = *ldt2; times_dim3 = *ldt3; times_offset = 1 + times_dim1 * (1 + times_dim2 * (1 + times_dim3 * 1)); times -= times_offset; opcnts_dim1 = *ldo1; opcnts_dim2 = *ldo2; opcnts_dim3 = *ldo3; opcnts_offset = 1 + opcnts_dim1 * (1 + opcnts_dim2 * (1 + opcnts_dim3 * 1) ); opcnts -= opcnts_offset; /* Function Body Extract the timing request from the input line. */ atimin_("ZBD", line, &c__17, subnam, timsub, nout, info, (ftnlen)3, ( ftnlen)80, (ftnlen)9); if (*info != 0) { return 0; } /* Check LWORK and Check that N <= LDA and M <= LDA for the input values. */ i__1 = *nsizes; for (j2 = 1; j2 <= i__1; ++j2) { /* Computing MAX Computing MIN */ i__4 = mm[j2], i__5 = nn[j2]; /* Computing MAX */ i__6 = mm[j2], i__7 = nn[j2]; i__2 = min(i__4,i__5) * 6, i__3 = max(i__6,i__7) * 3, i__2 = max(i__2, i__3), i__3 = *nsizes * *nparms * *ntypes; if (*lwork < max(i__2,i__3)) { *info = -24; io___7.ciunit = *nout; s_wsfe(&io___7); do_fio(&c__1, line, (ftnlen)6); e_wsfe(); return 0; } i__2 = *nparms; for (j1 = 1; j1 <= i__2; ++j1) { /* Computing MAX */ i__3 = nn[j2], i__4 = mm[j2]; if (max(i__3,i__4) > ldas[j1]) { *info = -9; io___9.ciunit = *nout; s_wsfe(&io___9); do_fio(&c__1, line, (ftnlen)6); e_wsfe(); return 0; } /* L10: */ } /* L20: */ } /* Check to see whether ZGEBRD must be run. RUNBRD -- if ZGEBRD must be run without timing. TRNBRD -- if ZGEBRD must be run with timing. */ runbrd = FALSE_; trnbrd = FALSE_; if (timsub[1] || timsub[2] || timsub[3] || timsub[4] || timsub[5]) { runbrd = TRUE_; } if (timsub[0]) { runbrd = FALSE_; } if (timsub[6] || timsub[7] || timsub[8] || timsub[9] || timsub[10]) { trnbrd = TRUE_; } /* Various Constants */ ulp = dlamch_("Epsilon") * dlamch_("Base"); ulpinv = 1. / ulp; xlaenv_(&c__9, &c__25); /* Zero out OPCNTS, TIMES */ for (j4 = 1; j4 <= 17; ++j4) { i__1 = *nsizes; for (j3 = 1; j3 <= i__1; ++j3) { i__2 = *ntypes; for (j2 = 1; j2 <= i__2; ++j2) { i__3 = *nparms; for (j1 = 1; j1 <= i__3; ++j1) { opcnts_ref(j1, j2, j3, j4) = 0.; times_ref(j1, j2, j3, j4) = 0.; /* L30: */ } /* L40: */ } /* L50: */ } /* L60: */ } /* Do for each value of N: */ i__1 = *nsizes; for (in = 1; in <= i__1; ++in) { n = nn[in]; m = mm[in]; minmn = min(m,n); if (m >= n) { *(unsigned char *)uplo = 'U'; ku = minmn; /* Computing MAX */ i__2 = minmn - 1; kvt = max(i__2,0); } else { *(unsigned char *)uplo = 'L'; /* Computing MAX */ i__2 = minmn - 1; ku = max(i__2,0); kvt = minmn; } /* Do for each .TRUE. value in DOTYPE: */ mtypes = min(5,*ntypes); if (*ntypes == 6 && *nsizes == 1) { mtypes = *ntypes; } i__2 = mtypes; for (itype = 1; itype <= i__2; ++itype) { if (! dotype[itype]) { goto L700; } /* Save random number seed for error messages */ for (j = 1; j <= 4; ++j) { ioldsd[j - 1] = iseed[j]; /* L70: */ } /* ----------------------------------------------------------------------- Time the LAPACK Routines Generate A */ if (itype <= 5) { if (itype >= 1 && itype <= 3) { imode = kmode[itype - 1]; zlatms_(&m, &n, "U", &iseed[1], "N", &d__[1], &imode, & ulpinv, &c_b27, &m, &n, "N", &a[1], &m, &work[1], info); } else if (itype >= 4 && itype <= 5) { if (itype == 4) { conds = -1.; } if (itype == 5) { conds = ulp; } zlatmr_(&m, &n, "S", &iseed[1], "N", &dc[1], &c__6, & c_b32, &c_b1, "T", "N", &dc[1], &c__0, &c_b27, & dc[1], &c__0, &c_b27, "N", jdum, &m, &n, &c_b32, & conds, "N", &a[1], &m, jdum, info); if (itype == 5) { conds = log(ulp) * -2.; i__3 = (minmn - 1) * m + minmn; i__4 = m + 1; for (j = 1; i__4 < 0 ? j >= i__3 : j <= i__3; j += i__4) { i__5 = j; zlarnd_(&z__2, &c__5, &iseed[1]); d__1 = exp(conds * dlarnd_(&c__1, &iseed[1])); z__1.r = d__1 * z__2.r, z__1.i = d__1 * z__2.i; a[i__5].r = z__1.r, a[i__5].i = z__1.i; /* L80: */ } if (m >= n) { i__4 = (minmn - 1) * m + minmn - 1; i__3 = m + 1; for (j = m + 1; i__3 < 0 ? j >= i__4 : j <= i__4; j += i__3) { i__5 = j; zlarnd_(&z__2, &c__5, &iseed[1]); d__1 = exp(conds * dlarnd_(&c__1, &iseed[1])); z__1.r = d__1 * z__2.r, z__1.i = d__1 * z__2.i; a[i__5].r = z__1.r, a[i__5].i = z__1.i; /* L90: */ } } else { i__3 = (minmn - 2) * m + minmn; i__4 = m + 1; for (j = 2; i__4 < 0 ? j >= i__3 : j <= i__3; j += i__4) { i__5 = j; zlarnd_(&z__2, &c__5, &iseed[1]); d__1 = exp(conds * dlarnd_(&c__1, &iseed[1])); z__1.r = d__1 * z__2.r, z__1.i = d__1 * z__2.i; a[i__5].r = z__1.r, a[i__5].i = z__1.i; /* L100: */ } } } } } /* Time ZGEBRD for each pair NNB(j), LDAS(j) */ if (timsub[0] || trnbrd) { i__4 = *nparms; for (ipar = 1; ipar <= i__4; ++ipar) { lda = ldas[ipar]; /* Computing MIN */ i__3 = n, i__5 = nnb[ipar]; nb = min(i__3,i__5); xlaenv_(&c__1, &nb); xlaenv_(&c__2, &c__2); xlaenv_(&c__3, &nb); /* Time ZGEBRD */ ic = 0; latime_1.ops = 0.; s1 = dsecnd_(); L110: zlacpy_("Full", &m, &n, &a[1], &m, &h__[1], &lda); zgebrd_(&m, &n, &h__[1], &lda, &d__[1], &e[1], &tauq[1], & taup[1], &work[1], lwork, &iinfo); if (iinfo != 0) { io___36.ciunit = *nout; s_wsfe(&io___36); do_fio(&c__1, subnam_ref(0, 1), (ftnlen)9); do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer)) ; do_fio(&c__1, (char *)&m, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&itype, (ftnlen)sizeof(integer)) ; do_fio(&c__1, (char *)&ipar, (ftnlen)sizeof(integer)); do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof( integer)); e_wsfe(); *info = abs(iinfo); goto L700; } s2 = dsecnd_(); time = s2 - s1; ++ic; if (time < *timmin) { goto L110; } /* Subtract the time used in ZLACPY. */ s1 = dsecnd_(); i__3 = ic; for (j = 1; j <= i__3; ++j) { zlacpy_("Full", &m, &n, &a[1], &m, &u[1], &lda); /* L120: */ } s2 = dsecnd_(); untime = s2 - s1; /* Computing MAX */ d__1 = time - untime; times_ref(ipar, itype, in, 1) = max(d__1,0.) / ( doublereal) ic; opcnts_ref(ipar, itype, in, 1) = dopla_("ZGEBRD", &m, &n, &c__0, &c__0, &nb); /* L130: */ } } else { if (runbrd) { zlacpy_("Full", &m, &n, &a[1], &m, &h__[1], &m) ; zgebrd_(&m, &n, &h__[1], &m, &d__[1], &e[1], &tauq[1], & taup[1], &work[1], lwork, &iinfo); if (iinfo != 0) { io___40.ciunit = *nout; s_wsfe(&io___40); do_fio(&c__1, subnam_ref(0, 1), (ftnlen)9); do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer)) ; do_fio(&c__1, (char *)&m, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&itype, (ftnlen)sizeof(integer)) ; do_fio(&c__1, (char *)&c__0, (ftnlen)sizeof(integer)); do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof( integer)); e_wsfe(); *info = abs(iinfo); goto L700; } } } /* Time ZBDSQR (singular values only) for each pair NNB(j), LDAS(j) */ if (timsub[1] || timsub[6]) { i__4 = *nparms; for (ipar = 1; ipar <= i__4; ++ipar) { lda = ldas[ipar]; /* Computing MIN */ i__3 = n, i__5 = nnb[ipar]; nb = min(i__3,i__5); /* If this value of LDA has been used before, just use that value */ lastnl = 0; i__3 = ipar - 1; for (j = 1; j <= i__3; ++j) { if (lda == ldas[j]) { lastnl = j; } /* L140: */ } if (lastnl == 0) { /* Time ZBDSQR (singular values only) */ ic = 0; latime_1.ops = 0.; s1 = dsecnd_(); L150: dcopy_(&minmn, &d__[1], &c__1, &rwork[1], &c__1); i__3 = minmn - 1; dcopy_(&i__3, &e[1], &c__1, &rwork[minmn + 1], &c__1); zbdsqr_(uplo, &minmn, &c__0, &c__0, &c__0, &rwork[1], &rwork[minmn + 1], &vt[1], &lda, &u[1], &lda, &u[1], &lda, &rwork[(minmn << 1) + 1], &iinfo); if (iinfo != 0) { io___42.ciunit = *nout; s_wsfe(&io___42); do_fio(&c__1, subnam_ref(0, 2), (ftnlen)9); do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&m, (ftnlen)sizeof(integer)) ; do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)) ; do_fio(&c__1, (char *)&itype, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&ipar, (ftnlen)sizeof( integer)); do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof( integer)); e_wsfe(); *info = abs(iinfo); goto L700; } s2 = dsecnd_(); time = s2 - s1; ++ic; if (time < *timmin) { goto L150; } /* Subtract the time used in ZLACPY. */ s1 = dsecnd_(); i__3 = ic; for (j = 1; j <= i__3; ++j) { dcopy_(&minmn, &d__[1], &c__1, &rwork[1], &c__1); i__5 = minmn - 1; dcopy_(&i__5, &e[1], &c__1, &rwork[minmn + 1], & c__1); /* L160: */ } s2 = dsecnd_(); untime = s2 - s1; /* Computing MAX */ d__1 = time - untime; times_ref(ipar, itype, in, 2) = max(d__1,0.) / ( doublereal) ic; opcnts_ref(ipar, itype, in, 2) = latime_1.ops / ( doublereal) ic; } else { times_ref(ipar, itype, in, 2) = times_ref(lastnl, itype, in, 2); opcnts_ref(ipar, itype, in, 2) = opcnts_ref(lastnl, itype, in, 2); } /* L170: */ } } /* Time ZBDSQR (singular values and left singular vectors, assume original matrix square) for each pair NNB(j), LDAS(j) */ if (timsub[2] || timsub[7] || timsub[8]) { i__4 = *nparms; for (ipar = 1; ipar <= i__4; ++ipar) { lda = ldas[ipar]; /* Computing MIN */ i__3 = n, i__5 = nnb[ipar]; nb = min(i__3,i__5); /* If this value of LDA has been used before, just use that value */ lastnl = 0; i__3 = ipar - 1; for (j = 1; j <= i__3; ++j) { if (lda == ldas[j]) { lastnl = j; } /* L180: */ } if (lastnl == 0) { /* Time ZBDSQR (singular values and left singular vectors, assume original matrix square) */ ic = 0; latime_1.ops = 0.; s1 = dsecnd_(); L190: zlaset_("Full", &m, &minmn, &c_b1, &c_b2, &u[1], &lda); dcopy_(&minmn, &d__[1], &c__1, &rwork[1], &c__1); i__3 = minmn - 1; dcopy_(&i__3, &e[1], &c__1, &rwork[minmn + 1], &c__1); zbdsqr_(uplo, &minmn, &c__0, &m, &c__0, &rwork[1], & rwork[minmn + 1], &vt[1], &lda, &u[1], &lda, & u[1], &lda, &rwork[(minmn << 1) + 1], &iinfo); if (iinfo != 0) { io___43.ciunit = *nout; s_wsfe(&io___43); do_fio(&c__1, subnam_ref(0, 3), (ftnlen)9); do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&m, (ftnlen)sizeof(integer)) ; do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)) ; do_fio(&c__1, (char *)&itype, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&ipar, (ftnlen)sizeof( integer)); do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof( integer)); e_wsfe(); *info = abs(iinfo); goto L700; } s2 = dsecnd_(); time = s2 - s1; ++ic; if (time < *timmin) { goto L190; } /* Subtract the time used in ZLACPY. */ s1 = dsecnd_(); i__3 = ic; for (j = 1; j <= i__3; ++j) { zlaset_("Full", &m, &minmn, &c_b1, &c_b2, &u[1], & lda); dcopy_(&minmn, &d__[1], &c__1, &rwork[1], &c__1); i__5 = minmn - 1; dcopy_(&i__5, &e[1], &c__1, &rwork[minmn + 1], & c__1); /* L200: */ } s2 = dsecnd_(); untime = s2 - s1; /* Computing MAX */ d__1 = time - untime; times_ref(ipar, itype, in, 3) = max(d__1,0.) / ( doublereal) ic; opcnts_ref(ipar, itype, in, 3) = latime_1.ops / ( doublereal) ic; } else { times_ref(ipar, itype, in, 3) = times_ref(lastnl, itype, in, 3); opcnts_ref(ipar, itype, in, 3) = opcnts_ref(lastnl, itype, in, 3); } /* L210: */ } } /* Time ZBDSQR (singular values and right singular vectors, assume original matrix square) for each pair NNB(j), LDAS(j) */ if (timsub[3] || timsub[9]) { i__4 = *nparms; for (ipar = 1; ipar <= i__4; ++ipar) { lda = ldas[ipar]; /* Computing MIN */ i__3 = n, i__5 = nnb[ipar]; nb = min(i__3,i__5); /* If this value of LDA has been used before, just use that value */ lastnl = 0; i__3 = ipar - 1; for (j = 1; j <= i__3; ++j) { if (lda == ldas[j]) { lastnl = j; } /* L220: */ } if (lastnl == 0) { /* Time ZBDSQR (singular values and right singular vectors, assume original matrix square) */ ic = 0; latime_1.ops = 0.; s1 = dsecnd_(); L230: zlaset_("Full", &minmn, &n, &c_b1, &c_b2, &vt[1], & lda); dcopy_(&minmn, &d__[1], &c__1, &rwork[1], &c__1); i__3 = minmn - 1; dcopy_(&i__3, &e[1], &c__1, &rwork[minmn + 1], &c__1); zbdsqr_(uplo, &minmn, &n, &c__0, &c__0, &rwork[1], & rwork[minmn + 1], &vt[1], &lda, &u[1], &lda, & u[1], &lda, &rwork[(minmn << 1) + 1], &iinfo); if (iinfo != 0) { io___44.ciunit = *nout; s_wsfe(&io___44); do_fio(&c__1, subnam_ref(0, 4), (ftnlen)9); do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&m, (ftnlen)sizeof(integer)) ; do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)) ; do_fio(&c__1, (char *)&itype, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&ipar, (ftnlen)sizeof( integer)); do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof( integer)); e_wsfe(); *info = abs(iinfo); goto L700; } s2 = dsecnd_(); time = s2 - s1; ++ic; if (time < *timmin) { goto L230; } /* Subtract the time used in ZLACPY. */ s1 = dsecnd_(); i__3 = ic; for (j = 1; j <= i__3; ++j) { zlaset_("Full", &minmn, &n, &c_b1, &c_b2, &vt[1], &lda); dcopy_(&minmn, &d__[1], &c__1, &rwork[1], &c__1); i__5 = minmn - 1; dcopy_(&i__5, &e[1], &c__1, &rwork[minmn + 1], & c__1); /* L240: */ } s2 = dsecnd_(); untime = s2 - s1; /* Computing MAX */ d__1 = time - untime; times_ref(ipar, itype, in, 4) = max(d__1,0.) / ( doublereal) ic; opcnts_ref(ipar, itype, in, 4) = latime_1.ops / ( doublereal) ic; } else { times_ref(ipar, itype, in, 4) = times_ref(lastnl, itype, in, 4); opcnts_ref(ipar, itype, in, 4) = opcnts_ref(lastnl, itype, in, 4); } /* L250: */ } } /* Time ZBDSQR (singular values and left and right singular vectors,assume original matrix square) for each pair NNB(j), LDAS(j) */ if (timsub[4] || timsub[10]) { i__4 = *nparms; for (ipar = 1; ipar <= i__4; ++ipar) { lda = ldas[ipar]; /* Computing MIN */ i__3 = n, i__5 = nnb[ipar]; nb = min(i__3,i__5); /* If this value of LDA has been used before, just use that value */ lastnl = 0; i__3 = ipar - 1; for (j = 1; j <= i__3; ++j) { if (lda == ldas[j]) { lastnl = j; } /* L260: */ } if (lastnl == 0) { /* Time ZBDSQR (singular values and left and right singular vectors, assume original matrix square) */ ic = 0; latime_1.ops = 0.; s1 = dsecnd_(); L270: zlaset_("Full", &minmn, &n, &c_b1, &c_b2, &vt[1], & lda); zlaset_("Full", &m, &minmn, &c_b1, &c_b2, &u[1], &lda); dcopy_(&minmn, &d__[1], &c__1, &rwork[1], &c__1); i__3 = minmn - 1; dcopy_(&i__3, &e[1], &c__1, &rwork[minmn + 1], &c__1); zbdsqr_(uplo, &minmn, &n, &m, &c__0, &rwork[1], & rwork[minmn + 1], &vt[1], &lda, &u[1], &lda, & u[1], &lda, &rwork[(minmn << 1) + 1], &iinfo); if (iinfo != 0) { io___45.ciunit = *nout; s_wsfe(&io___45); do_fio(&c__1, subnam_ref(0, 5), (ftnlen)9); do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&m, (ftnlen)sizeof(integer)) ; do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)) ; do_fio(&c__1, (char *)&itype, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&ipar, (ftnlen)sizeof( integer)); do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof( integer)); e_wsfe(); *info = abs(iinfo); goto L700; } s2 = dsecnd_(); time = s2 - s1; ++ic; if (time < *timmin) { goto L270; } /* Subtract the time used in ZLACPY. */ s1 = dsecnd_(); i__3 = ic; for (j = 1; j <= i__3; ++j) { zlaset_("Full", &minmn, &n, &c_b1, &c_b2, &vt[1], &lda); zlaset_("Full", &m, &minmn, &c_b1, &c_b2, &u[1], & lda); dcopy_(&minmn, &d__[1], &c__1, &rwork[1], &c__1); i__5 = minmn - 1; dcopy_(&i__5, &e[1], &c__1, &rwork[minmn + 1], & c__1); /* L280: */ } s2 = dsecnd_(); untime = s2 - s1; /* Computing MAX */ d__1 = time - untime; times_ref(ipar, itype, in, 5) = max(d__1,0.) / ( doublereal) ic; opcnts_ref(ipar, itype, in, 5) = latime_1.ops / ( doublereal) ic; } else { times_ref(ipar, itype, in, 5) = times_ref(lastnl, itype, in, 5); opcnts_ref(ipar, itype, in, 5) = opcnts_ref(lastnl, itype, in, 5); } /* L290: */ } } /* Time ZBDSQR (singular values and multiply square matrix by transpose of left singular vectors) for each pair NNB(j), LDAS(j) */ if (timsub[5]) { i__4 = *nparms; for (ipar = 1; ipar <= i__4; ++ipar) { lda = ldas[ipar]; /* Computing MIN */ i__3 = n, i__5 = nnb[ipar]; nb = min(i__3,i__5); /* If this value of LDA has been used before, just use that value */ lastnl = 0; i__3 = ipar - 1; for (j = 1; j <= i__3; ++j) { if (lda == ldas[j]) { lastnl = j; } /* L300: */ } if (lastnl == 0) { /* Time ZBDSQR (singular values and multiply square matrix by transpose of left singular vectors) */ ic = 0; latime_1.ops = 0.; s1 = dsecnd_(); L310: zlaset_("Full", &minmn, &minmn, &c_b1, &c_b2, &u[1], & lda); dcopy_(&minmn, &d__[1], &c__1, &rwork[1], &c__1); i__3 = minmn - 1; dcopy_(&i__3, &e[1], &c__1, &rwork[minmn + 1], &c__1); zbdsqr_(uplo, &minmn, &c__0, &c__0, &minmn, &rwork[1], &rwork[minmn + 1], &vt[1], &lda, &u[1], &lda, &u[1], &lda, &rwork[(minmn << 1) + 1], & iinfo); if (iinfo != 0) { io___46.ciunit = *nout; s_wsfe(&io___46); do_fio(&c__1, subnam_ref(0, 6), (ftnlen)9); do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&m, (ftnlen)sizeof(integer)) ; do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)) ; do_fio(&c__1, (char *)&itype, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&ipar, (ftnlen)sizeof( integer)); do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof( integer)); e_wsfe(); *info = abs(iinfo); goto L700; } s2 = dsecnd_(); time = s2 - s1; ++ic; if (time < *timmin) { goto L310; } /* Subtract the time used in ZLACPY. */ s1 = dsecnd_(); i__3 = ic; for (j = 1; j <= i__3; ++j) { zlaset_("Full", &minmn, &minmn, &c_b1, &c_b2, &u[ 1], &lda); dcopy_(&minmn, &d__[1], &c__1, &rwork[1], &c__1); i__5 = minmn - 1; dcopy_(&i__5, &e[1], &c__1, &rwork[minmn + 1], & c__1); /* L320: */ } s2 = dsecnd_(); untime = s2 - s1; /* Computing MAX */ d__1 = time - untime; times_ref(ipar, itype, in, 6) = max(d__1,0.) / ( doublereal) ic; opcnts_ref(ipar, itype, in, 6) = latime_1.ops / ( doublereal) ic; } else { times_ref(ipar, itype, in, 6) = times_ref(lastnl, itype, in, 6); opcnts_ref(ipar, itype, in, 6) = opcnts_ref(lastnl, itype, in, 6); } /* L330: */ } } /* Time ZGEBRD+ZBDSQR (singular values only) for each pair NNB(j), LDAS(j) */ if (timsub[6]) { i__4 = *nparms; for (ipar = 1; ipar <= i__4; ++ipar) { times_ref(ipar, itype, in, 7) = times_ref(ipar, itype, in, 1) + times_ref(ipar, itype, in, 2); opcnts_ref(ipar, itype, in, 7) = opcnts_ref(ipar, itype, in, 1) + opcnts_ref(ipar, itype, in, 2); /* L340: */ } } /* Time ZGEBRD+ZUNGBR+ZBDSQR (singular values and min(M,N) left singular vectors) for each pair NNB(j), LDAS(j) */ if (timsub[7]) { i__4 = *nparms; for (ipar = 1; ipar <= i__4; ++ipar) { lda = ldas[ipar]; /* Computing MIN */ i__3 = n, i__5 = nnb[ipar]; nb = min(i__3,i__5); xlaenv_(&c__1, &nb); xlaenv_(&c__2, &c__2); xlaenv_(&c__3, &nb); /* Time ZGEBRD+ZUNGBR+ZBDSQR (singular values and min(M,N) left singular vectors) */ ic = 0; latime_1.ops = 0.; s1 = dsecnd_(); L350: zlacpy_("L", &m, &minmn, &h__[1], &lda, &u[1], &lda); zungbr_("Q", &m, &minmn, &ku, &u[1], &lda, &tauq[1], & work[1], lwork, &iinfo); if (iinfo != 0) { io___47.ciunit = *nout; s_wsfe(&io___47); do_fio(&c__1, subnam_ref(0, 8), (ftnlen)9); do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer)) ; do_fio(&c__1, (char *)&m, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&itype, (ftnlen)sizeof(integer)) ; do_fio(&c__1, (char *)&ipar, (ftnlen)sizeof(integer)); do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof( integer)); e_wsfe(); *info = abs(iinfo); goto L700; } s2 = dsecnd_(); time = s2 - s1; ++ic; if (time < *timmin) { goto L350; } /* Subtract the time used in ZLACPY. */ s1 = dsecnd_(); i__3 = ic; for (j = 1; j <= i__3; ++j) { zlacpy_("L", &m, &minmn, &h__[1], &lda, &u[1], &lda); /* L360: */ } s2 = dsecnd_(); untime = s2 - s1; /* Computing MAX */ d__1 = time - untime; times_ref(ipar, itype, in, 8) = max(d__1,0.) / ( doublereal) ic + times_ref(ipar, itype, in, 1) + times_ref(ipar, itype, in, 3); opcnts_ref(ipar, itype, in, 8) = dopla2_("ZUNGBR", "Q", & m, &minmn, &ku, &c__0, &nb) + opcnts_ref(ipar, itype, in, 1) + opcnts_ref( ipar, itype, in, 3); /* L370: */ } } /* Time ZGEBRD+ZUNGBR+ZBDSQR (singular values and M left singular vectors) for each pair NNB(j), LDAS(j) */ if (timsub[8]) { i__4 = *nparms; for (ipar = 1; ipar <= i__4; ++ipar) { lda = ldas[ipar]; /* Computing MIN */ i__3 = n, i__5 = nnb[ipar]; nb = min(i__3,i__5); xlaenv_(&c__1, &nb); xlaenv_(&c__2, &c__2); xlaenv_(&c__3, &nb); /* Time ZGEBRD+ZUNGBR+ZBDSQR (singular values and M left singular vectors) */ ic = 0; latime_1.ops = 0.; s1 = dsecnd_(); L380: zlacpy_("L", &m, &minmn, &h__[1], &lda, &u[1], &lda); zungbr_("Q", &m, &m, &ku, &u[1], &lda, &tauq[1], &work[1], lwork, &iinfo); if (iinfo != 0) { io___48.ciunit = *nout; s_wsfe(&io___48); do_fio(&c__1, subnam_ref(0, 9), (ftnlen)9); do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer)) ; do_fio(&c__1, (char *)&m, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&itype, (ftnlen)sizeof(integer)) ; do_fio(&c__1, (char *)&ipar, (ftnlen)sizeof(integer)); do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof( integer)); e_wsfe(); *info = abs(iinfo); goto L700; } s2 = dsecnd_(); time = s2 - s1; ++ic; if (time < *timmin) { goto L380; } /* Subtract the time used in ZLACPY. */ s1 = dsecnd_(); i__3 = ic; for (j = 1; j <= i__3; ++j) { zlacpy_("L", &m, &minmn, &h__[1], &lda, &u[1], &lda); /* L390: */ } s2 = dsecnd_(); untime = s2 - s1; /* Computing MAX */ d__1 = time - untime; times_ref(ipar, itype, in, 9) = max(d__1,0.) / ( doublereal) ic + times_ref(ipar, itype, in, 1) + times_ref(ipar, itype, in, 3); opcnts_ref(ipar, itype, in, 9) = dopla2_("ZUNGBR", "Q", & m, &m, &ku, &c__0, &nb) + opcnts_ref(ipar, itype, in, 1) + opcnts_ref(ipar, itype, in, 3); /* L400: */ } } /* Time ZGEBRD+ZUNGBR+ZBDSQR (singular values and N right singular vectors) for each pair NNB(j), LDAS(j) */ if (timsub[9]) { i__4 = *nparms; for (ipar = 1; ipar <= i__4; ++ipar) { lda = ldas[ipar]; /* Computing MIN */ i__3 = n, i__5 = nnb[ipar]; nb = min(i__3,i__5); xlaenv_(&c__1, &nb); xlaenv_(&c__2, &c__2); xlaenv_(&c__3, &nb); /* Time ZGEBRD+ZUNGBR+ZBDSQR (singular values and N right singular vectors) */ ic = 0; latime_1.ops = 0.; s1 = dsecnd_(); L410: zlacpy_("U", &minmn, &n, &h__[1], &lda, &vt[1], &lda); zungbr_("P", &n, &n, &kvt, &vt[1], &lda, &taup[1], &work[ 1], lwork, &iinfo); if (iinfo != 0) { io___49.ciunit = *nout; s_wsfe(&io___49); do_fio(&c__1, subnam_ref(0, 10), (ftnlen)9); do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer)) ; do_fio(&c__1, (char *)&m, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&itype, (ftnlen)sizeof(integer)) ; do_fio(&c__1, (char *)&ipar, (ftnlen)sizeof(integer)); do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof( integer)); e_wsfe(); *info = abs(iinfo); goto L700; } s2 = dsecnd_(); time = s2 - s1; ++ic; if (time < *timmin) { goto L410; } /* Subtract the time used in ZLACPY. */ s1 = dsecnd_(); i__3 = ic; for (j = 1; j <= i__3; ++j) { zlacpy_("U", &minmn, &n, &h__[1], &lda, &vt[1], &lda); /* L420: */ } s2 = dsecnd_(); untime = s2 - s1; /* Computing MAX */ d__1 = time - untime; times_ref(ipar, itype, in, 10) = max(d__1,0.) / ( doublereal) ic + times_ref(ipar, itype, in, 1) + times_ref(ipar, itype, in, 4); opcnts_ref(ipar, itype, in, 10) = dopla2_("ZUNGBR", "P", & n, &n, &kvt, &c__0, &nb) + opcnts_ref(ipar, itype, in, 1) + opcnts_ref(ipar, itype, in, 4); /* L430: */ } } /* Time ZGEBRD+ZUNGBR+ZBDSQR (singular values and min(M,N) left singular vectors and N right singular vectors) for each pair NNB(j), LDAS(j) */ if (timsub[10]) { i__4 = *nparms; for (ipar = 1; ipar <= i__4; ++ipar) { lda = ldas[ipar]; /* Computing MIN */ i__3 = n, i__5 = nnb[ipar]; nb = min(i__3,i__5); xlaenv_(&c__1, &nb); xlaenv_(&c__2, &c__2); xlaenv_(&c__3, &nb); /* Time ZGEBRD+ZUNGBR+ZBDSQR (singular values and min(M,N) left singular vectors and N right singular vectors) */ ic = 0; latime_1.ops = 0.; s1 = dsecnd_(); L440: zlacpy_("L", &m, &minmn, &h__[1], &lda, &u[1], &lda); zungbr_("Q", &m, &minmn, &ku, &u[1], &lda, &tauq[1], & work[1], lwork, &iinfo); if (iinfo != 0) { io___50.ciunit = *nout; s_wsfe(&io___50); do_fio(&c__1, subnam_ref(0, 11), (ftnlen)9); do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer)) ; do_fio(&c__1, (char *)&m, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&itype, (ftnlen)sizeof(integer)) ; do_fio(&c__1, (char *)&ipar, (ftnlen)sizeof(integer)); do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof( integer)); e_wsfe(); *info = abs(iinfo); goto L700; } zlacpy_("U", &minmn, &n, &h__[1], &lda, &vt[1], &lda); zungbr_("P", &n, &n, &kvt, &vt[1], &lda, &taup[1], &work[ 1], lwork, &iinfo); if (iinfo != 0) { io___51.ciunit = *nout; s_wsfe(&io___51); do_fio(&c__1, subnam_ref(0, 11), (ftnlen)9); do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer)) ; do_fio(&c__1, (char *)&m, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&itype, (ftnlen)sizeof(integer)) ; do_fio(&c__1, (char *)&ipar, (ftnlen)sizeof(integer)); do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof( integer)); e_wsfe(); *info = abs(iinfo); goto L700; } s2 = dsecnd_(); time = s2 - s1; ++ic; if (time < *timmin) { goto L440; } /* Subtract the time used in ZLACPY. */ s1 = dsecnd_(); i__3 = ic; for (j = 1; j <= i__3; ++j) { zlacpy_("L", &minmn, &minmn, &h__[1], &lda, &vt[1], & lda); /* L450: */ } s2 = dsecnd_(); untime = s2 - s1; /* Computing MAX */ d__1 = time - untime; times_ref(ipar, itype, in, 11) = max(d__1,0.) / ( doublereal) ic + times_ref(ipar, itype, in, 1) + times_ref(ipar, itype, in, 5); opcnts_ref(ipar, itype, in, 11) = dopla2_("ZUNGBR", "Q", & m, &minmn, &ku, &c__0, &nb) + dopla2_("ZUNGBR", "P", &n, &n, &kvt, &c__0, &nb) + opcnts_ref(ipar, itype, in, 1) + opcnts_ref(ipar, itype, in, 5); /* L460: */ } } /* Time ZGESDD( singular values and min(M,N) left singular vectors and N right singular vectors when M>=N, singular values and M left singular vectors and min(M,N) right singular vectors otherwise) for each pair NNB(j), LDAS(j) */ if (timsub[11]) { i__4 = *nparms; for (ipar = 1; ipar <= i__4; ++ipar) { lda = ldas[ipar]; /* Computing MIN */ i__3 = n, i__5 = nnb[ipar]; nb = min(i__3,i__5); xlaenv_(&c__1, &nb); xlaenv_(&c__2, &c__2); xlaenv_(&c__3, &nb); /* Time ZGESDD (singular values and min(M,N) left singular vectors and N right singular vectors) */ ic = 0; latime_1.ops = 0.; s1 = dsecnd_(); L470: zlacpy_("Full", &m, &n, &a[1], &m, &h__[1], &lda); zgesdd_("S", &m, &n, &h__[1], &lda, &rwork[1], &u[1], & lda, &vt[1], &lda, &work[1], lwork, &rwork[(minmn << 1) + 1], &iwork[1], &iinfo); s2 = dsecnd_(); if (iinfo != 0) { io___52.ciunit = *nout; s_wsfe(&io___52); do_fio(&c__1, subnam_ref(0, 12), (ftnlen)9); do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer)) ; do_fio(&c__1, (char *)&m, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&itype, (ftnlen)sizeof(integer)) ; do_fio(&c__1, (char *)&ipar, (ftnlen)sizeof(integer)); do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof( integer)); e_wsfe(); *info = abs(iinfo); goto L700; } time = s2 - s1; ++ic; if (time < *timmin) { goto L470; } /* Subtract the time used in ZLACPY. */ s1 = dsecnd_(); i__3 = ic; for (j = 1; j <= i__3; ++j) { zlacpy_("Full", &m, &n, &a[1], &m, &h__[1], &lda); /* L480: */ } s2 = dsecnd_(); untime = s2 - s1; /* Computing MAX */ d__1 = time - untime; times_ref(ipar, itype, in, 12) = max(d__1,0.) / ( doublereal) ic; opcnts_ref(ipar, itype, in, 12) = latime_1.ops / ( doublereal) ic; /* L490: */ } } /* Time ZSVDC (singular values only) for each pair NNB(j), LDAS(j) */ if (timsub[12]) { i__4 = *nparms; for (ipar = 1; ipar <= i__4; ++ipar) { lda = ldas[ipar]; /* If this value of LDA has been used before, just use that value */ lastnl = 0; i__3 = ipar - 1; for (j = 1; j <= i__3; ++j) { if (lda == ldas[j]) { lastnl = j; } /* L500: */ } if (lastnl == 0) { /* Time ZSVDC (singular values only) */ ic = 0; latime_1.ops = 0.; s1 = dsecnd_(); L510: zlacpy_("Full", &m, &n, &a[1], &m, &h__[1], &lda); zsvdc_(&h__[1], &lda, &m, &n, &dc[1], &ec[1], &u[1], & lda, &vt[1], &lda, &work[1], &c__0, &iinfo); if (iinfo != 0) { io___53.ciunit = *nout; s_wsfe(&io___53); do_fio(&c__1, subnam_ref(0, 13), (ftnlen)9); do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&m, (ftnlen)sizeof(integer)) ; do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)) ; do_fio(&c__1, (char *)&itype, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&ipar, (ftnlen)sizeof( integer)); do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof( integer)); e_wsfe(); *info = abs(iinfo); goto L700; } s2 = dsecnd_(); time = s2 - s1; ++ic; if (time < *timmin) { goto L510; } /* Subtract the time used in ZLACPY. */ s1 = dsecnd_(); i__3 = ic; for (j = 1; j <= i__3; ++j) { zlacpy_("Full", &m, &n, &a[1], &m, &h__[1], &lda); /* L520: */ } s2 = dsecnd_(); untime = s2 - s1; /* Computing MAX */ d__1 = time - untime; times_ref(ipar, itype, in, 13) = max(d__1,0.) / ( doublereal) ic; opcnts_ref(ipar, itype, in, 13) = latime_1.ops / ( doublereal) ic; } else { times_ref(ipar, itype, in, 13) = times_ref(lastnl, itype, in, 13); opcnts_ref(ipar, itype, in, 13) = opcnts_ref(lastnl, itype, in, 13); } /* L530: */ } } /* Time ZSVDC (singular values and min(M,N) left singular vectors) for each pair NNB(j), LDAS(j) */ if (timsub[13]) { i__4 = *nparms; for (ipar = 1; ipar <= i__4; ++ipar) { lda = ldas[ipar]; /* If this value of LDA has been used before, just use that value */ lastnl = 0; i__3 = ipar - 1; for (j = 1; j <= i__3; ++j) { if (lda == ldas[j]) { lastnl = j; } /* L540: */ } if (lastnl == 0) { /* Time ZSVDC (singular values and min(M,N) left singular vectors) */ ic = 0; latime_1.ops = 0.; s1 = dsecnd_(); L550: zlacpy_("Full", &m, &n, &a[1], &m, &h__[1], &lda); zsvdc_(&h__[1], &lda, &m, &n, &dc[1], &ec[1], &u[1], & lda, &vt[1], &lda, &work[1], &c__20, &iinfo); if (iinfo != 0) { io___54.ciunit = *nout; s_wsfe(&io___54); do_fio(&c__1, subnam_ref(0, 14), (ftnlen)9); do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&m, (ftnlen)sizeof(integer)) ; do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)) ; do_fio(&c__1, (char *)&itype, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&ipar, (ftnlen)sizeof( integer)); do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof( integer)); e_wsfe(); *info = abs(iinfo); goto L700; } s2 = dsecnd_(); time = s2 - s1; ++ic; if (time < *timmin) { goto L550; } /* Subtract the time used in ZLACPY. */ s1 = dsecnd_(); i__3 = ic; for (j = 1; j <= i__3; ++j) { zlacpy_("Full", &m, &n, &a[1], &m, &h__[1], &lda); /* L560: */ } s2 = dsecnd_(); untime = s2 - s1; /* Computing MAX */ d__1 = time - untime; times_ref(ipar, itype, in, 14) = max(d__1,0.) / ( doublereal) ic; opcnts_ref(ipar, itype, in, 14) = latime_1.ops / ( doublereal) ic; } else { times_ref(ipar, itype, in, 14) = times_ref(lastnl, itype, in, 14); opcnts_ref(ipar, itype, in, 14) = opcnts_ref(lastnl, itype, in, 14); } /* L570: */ } } /* Time ZSVDC (singular values and M left singular vectors) for each pair NNB(j), LDAS(j) */ if (timsub[14]) { i__4 = *nparms; for (ipar = 1; ipar <= i__4; ++ipar) { lda = ldas[ipar]; /* If this value of LDA has been used before, just use that value */ lastnl = 0; i__3 = ipar - 1; for (j = 1; j <= i__3; ++j) { if (lda == ldas[j]) { lastnl = j; } /* L580: */ } if (lastnl == 0) { /* Time ZSVDC (singular values and M left singular vectors) */ ic = 0; latime_1.ops = 0.; s1 = dsecnd_(); L590: zlacpy_("Full", &m, &n, &a[1], &m, &h__[1], &lda); zsvdc_(&h__[1], &lda, &m, &n, &dc[1], &ec[1], &u[1], & lda, &vt[1], &lda, &work[1], &c__10, &iinfo); if (iinfo != 0) { io___55.ciunit = *nout; s_wsfe(&io___55); do_fio(&c__1, subnam_ref(0, 14), (ftnlen)9); do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&m, (ftnlen)sizeof(integer)) ; do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)) ; do_fio(&c__1, (char *)&itype, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&ipar, (ftnlen)sizeof( integer)); do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof( integer)); e_wsfe(); *info = abs(iinfo); goto L700; } s2 = dsecnd_(); time = s2 - s1; ++ic; if (time < *timmin) { goto L590; } /* Subtract the time used in ZLACPY. */ s1 = dsecnd_(); i__3 = ic; for (j = 1; j <= i__3; ++j) { zlacpy_("Full", &m, &n, &a[1], &m, &h__[1], &lda); /* L600: */ } s2 = dsecnd_(); untime = s2 - s1; /* Computing MAX */ d__1 = time - untime; times_ref(ipar, itype, in, 15) = max(d__1,0.) / ( doublereal) ic; opcnts_ref(ipar, itype, in, 15) = latime_1.ops / ( doublereal) ic; } else { times_ref(ipar, itype, in, 15) = times_ref(lastnl, itype, in, 15); opcnts_ref(ipar, itype, in, 15) = opcnts_ref(lastnl, itype, in, 15); } /* L610: */ } } /* Time ZSVDC (singular values and N right singular vectors) for each pair NNB(j), LDAS(j) */ if (timsub[15]) { i__4 = *nparms; for (ipar = 1; ipar <= i__4; ++ipar) { lda = ldas[ipar]; /* If this value of LDA has been used before, just use that value */ lastnl = 0; i__3 = ipar - 1; for (j = 1; j <= i__3; ++j) { if (lda == ldas[j]) { lastnl = j; } /* L620: */ } if (lastnl == 0) { /* Time ZSVDC (singular values and N right singular vectors) */ ic = 0; latime_1.ops = 0.; s1 = dsecnd_(); L630: zlacpy_("Full", &m, &n, &a[1], &m, &h__[1], &lda); zsvdc_(&h__[1], &lda, &m, &n, &dc[1], &ec[1], &u[1], & lda, &vt[1], &lda, &work[1], &c__1, &iinfo); if (iinfo != 0) { io___56.ciunit = *nout; s_wsfe(&io___56); do_fio(&c__1, subnam_ref(0, 15), (ftnlen)9); do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&m, (ftnlen)sizeof(integer)) ; do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)) ; do_fio(&c__1, (char *)&itype, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&ipar, (ftnlen)sizeof( integer)); do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof( integer)); e_wsfe(); *info = abs(iinfo); goto L700; } s2 = dsecnd_(); time = s2 - s1; ++ic; if (time < *timmin) { goto L630; } /* Subtract the time used in ZLACPY. */ s1 = dsecnd_(); i__3 = ic; for (j = 1; j <= i__3; ++j) { zlacpy_("Full", &m, &n, &a[1], &m, &h__[1], &lda); /* L640: */ } s2 = dsecnd_(); untime = s2 - s1; /* Computing MAX */ d__1 = time - untime; times_ref(ipar, itype, in, 16) = max(d__1,0.) / ( doublereal) ic; opcnts_ref(ipar, itype, in, 16) = latime_1.ops / ( doublereal) ic; } else { times_ref(ipar, itype, in, 16) = times_ref(lastnl, itype, in, 16); opcnts_ref(ipar, itype, in, 16) = opcnts_ref(lastnl, itype, in, 16); } /* L650: */ } } /* Time ZSVDC (singular values and min(M,N) left singular vectors and N right singular vectors) for each pair NNB(j), LDAS(j) */ if (timsub[16]) { i__4 = *nparms; for (ipar = 1; ipar <= i__4; ++ipar) { lda = ldas[ipar]; /* If this value of LDA has been used before, just use that value */ lastnl = 0; i__3 = ipar - 1; for (j = 1; j <= i__3; ++j) { if (lda == ldas[j]) { lastnl = j; } /* L660: */ } if (lastnl == 0) { /* Time ZSVDC (singular values and min(M,N) left singular vectors and N right singular vectors) */ ic = 0; latime_1.ops = 0.; s1 = dsecnd_(); L670: zlacpy_("Full", &m, &n, &a[1], &m, &h__[1], &lda); zsvdc_(&h__[1], &lda, &m, &n, &dc[1], &ec[1], &u[1], & lda, &vt[1], &lda, &work[1], &c__21, &iinfo); if (iinfo != 0) { io___57.ciunit = *nout; s_wsfe(&io___57); do_fio(&c__1, subnam_ref(0, 16), (ftnlen)9); do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&m, (ftnlen)sizeof(integer)) ; do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)) ; do_fio(&c__1, (char *)&itype, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&ipar, (ftnlen)sizeof( integer)); do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof( integer)); e_wsfe(); *info = abs(iinfo); goto L700; } s2 = dsecnd_(); time = s2 - s1; ++ic; if (time < *timmin) { goto L670; } /* Subtract the time used in ZLACPY. */ s1 = dsecnd_(); i__3 = ic; for (j = 1; j <= i__3; ++j) { zlacpy_("Full", &m, &n, &a[1], &m, &h__[1], &lda); /* L680: */ } s2 = dsecnd_(); untime = s2 - s1; /* Computing MAX */ d__1 = time - untime; times_ref(ipar, itype, in, 16) = max(d__1,0.) / ( doublereal) ic; opcnts_ref(ipar, itype, in, 16) = latime_1.ops / ( doublereal) ic; } else { times_ref(ipar, itype, in, 16) = times_ref(lastnl, itype, in, 16); opcnts_ref(ipar, itype, in, 16) = opcnts_ref(lastnl, itype, in, 16); } /* L690: */ } } L700: ; } /* L710: */ } /* ----------------------------------------------------------------------- Print a table of results for each timed routine. */ for (isub = 1; isub <= 17; ++isub) { if (timsub[isub - 1]) { dprtbv_(subnam_ref(0, isub), ntypes, &dotype[1], nsizes, &mm[1], & nn[1], &inparm[isub - 1], pnames, nparms, &ldas[1], &nnb[ 1], &opcnts_ref(1, 1, 1, isub), ldo1, ldo2, ×_ref(1, 1, 1, isub), ldt1, ldt2, &rwork[1], &llwork[1], nout, ( ftnlen)9, (ftnlen)4); } /* L720: */ } return 0; /* End of ZTIM26 */ } /* ztim26_ */ #undef opcnts_ref #undef subnam_ref #undef times_ref