#include "blaswrap.h" /* -- translated by f2c (version 19990503). You must link the resulting object file with the libraries: -lf2c -lm (in that order) */ #include "f2c.h" /* Common Block Declarations */ struct { doublereal ops, itcnt; } latime_; #define latime_1 latime_ /* Table of constant values */ static integer c__1 = 1; static integer c_n1 = -1; /* Subroutine */ int dlaed1_(integer *n, doublereal *d__, doublereal *q, integer *ldq, integer *indxq, doublereal *rho, integer *cutpnt, doublereal *work, integer *iwork, integer *info) { /* System generated locals */ integer q_dim1, q_offset, i__1, i__2; /* Local variables */ static integer indx, i__, k, indxc; extern /* Subroutine */ int dcopy_(integer *, doublereal *, integer *, doublereal *, integer *); static integer indxp; extern /* Subroutine */ int dlaed2_(integer *, integer *, integer *, doublereal *, doublereal *, integer *, integer *, doublereal *, doublereal *, doublereal *, doublereal *, doublereal *, integer *, integer *, integer *, integer *, integer *), dlaed3_(integer *, integer *, integer *, doublereal *, doublereal *, integer *, doublereal *, doublereal *, doublereal *, integer *, integer *, doublereal *, doublereal *, integer *); static integer n1, n2, idlmda, is, iw, iz; extern /* Subroutine */ int dlamrg_(integer *, integer *, doublereal *, integer *, integer *, integer *), xerbla_(char *, integer *); static integer coltyp, iq2, zpp1; #define q_ref(a_1,a_2) q[(a_2)*q_dim1 + a_1] /* -- LAPACK routine (instrumented to count operations, version 3.0) -- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., Courant Institute, Argonne National Lab, and Rice University June 30, 1999 Common block to return operation count and iteration count ITCNT is unchanged, OPS is only incremented Purpose ======= DLAED1 computes the updated eigensystem of a diagonal matrix after modification by a rank-one symmetric matrix. This routine is used only for the eigenproblem which requires all eigenvalues and eigenvectors of a tridiagonal matrix. DLAED7 handles the case in which eigenvalues only or eigenvalues and eigenvectors of a full symmetric matrix (which was reduced to tridiagonal form) are desired. T = Q(in) ( D(in) + RHO * Z*Z' ) Q'(in) = Q(out) * D(out) * Q'(out) where Z = Q'u, u is a vector of length N with ones in the CUTPNT and CUTPNT + 1 th elements and zeros elsewhere. The eigenvectors of the original matrix are stored in Q, and the eigenvalues are in D. The algorithm consists of three stages: The first stage consists of deflating the size of the problem when there are multiple eigenvalues or if there is a zero in the Z vector. For each such occurence the dimension of the secular equation problem is reduced by one. This stage is performed by the routine DLAED2. The second stage consists of calculating the updated eigenvalues. This is done by finding the roots of the secular equation via the routine DLAED4 (as called by DLAED3). This routine also calculates the eigenvectors of the current problem. The final stage consists of computing the updated eigenvectors directly using the updated eigenvalues. The eigenvectors for the current problem are multiplied with the eigenvectors from the overall problem. Arguments ========= N (input) INTEGER The dimension of the symmetric tridiagonal matrix. N >= 0. D (input/output) DOUBLE PRECISION array, dimension (N) On entry, the eigenvalues of the rank-1-perturbed matrix. On exit, the eigenvalues of the repaired matrix. Q (input/output) DOUBLE PRECISION array, dimension (LDQ,N) On entry, the eigenvectors of the rank-1-perturbed matrix. On exit, the eigenvectors of the repaired tridiagonal matrix. LDQ (input) INTEGER The leading dimension of the array Q. LDQ >= max(1,N). INDXQ (input/output) INTEGER array, dimension (N) On entry, the permutation which separately sorts the two subproblems in D into ascending order. On exit, the permutation which will reintegrate the subproblems back into sorted order, i.e. D( INDXQ( I = 1, N ) ) will be in ascending order. RHO (input) DOUBLE PRECISION The subdiagonal entry used to create the rank-1 modification. CUTPNT (input) INTEGER The location of the last eigenvalue in the leading sub-matrix. min(1,N) <= CUTPNT <= N/2. WORK (workspace) DOUBLE PRECISION array, dimension (4*N + N**2) IWORK (workspace) INTEGER array, dimension (4*N) INFO (output) INTEGER = 0: successful exit. < 0: if INFO = -i, the i-th argument had an illegal value. > 0: if INFO = 1, an eigenvalue did not converge Further Details =============== Based on contributions by Jeff Rutter, Computer Science Division, University of California at Berkeley, USA Modified by Francoise Tisseur, University of Tennessee. ===================================================================== Test the input parameters. Parameter adjustments */ --d__; q_dim1 = *ldq; q_offset = 1 + q_dim1 * 1; q -= q_offset; --indxq; --work; --iwork; /* Function Body */ *info = 0; if (*n < 0) { *info = -1; } else if (*ldq < max(1,*n)) { *info = -4; } else /* if(complicated condition) */ { /* Computing MIN */ i__1 = 1, i__2 = *n / 2; if (min(i__1,i__2) > *cutpnt || *n / 2 < *cutpnt) { *info = -7; } } if (*info != 0) { i__1 = -(*info); xerbla_("DLAED1", &i__1); return 0; } /* Quick return if possible */ if (*n == 0) { return 0; } /* The following values are integer pointers which indicate the portion of the workspace used by a particular array in DLAED2 and DLAED3. */ iz = 1; idlmda = iz + *n; iw = idlmda + *n; iq2 = iw + *n; indx = 1; indxc = indx + *n; coltyp = indxc + *n; indxp = coltyp + *n; /* Form the z-vector which consists of the last row of Q_1 and the first row of Q_2. */ dcopy_(cutpnt, &q_ref(*cutpnt, 1), ldq, &work[iz], &c__1); zpp1 = *cutpnt + 1; i__1 = *n - *cutpnt; dcopy_(&i__1, &q_ref(zpp1, zpp1), ldq, &work[iz + *cutpnt], &c__1); /* Deflate eigenvalues. */ dlaed2_(&k, n, cutpnt, &d__[1], &q[q_offset], ldq, &indxq[1], rho, &work[ iz], &work[idlmda], &work[iw], &work[iq2], &iwork[indx], &iwork[ indxc], &iwork[indxp], &iwork[coltyp], info); if (*info != 0) { goto L20; } /* Solve Secular Equation. */ if (k != 0) { is = (iwork[coltyp] + iwork[coltyp + 1]) * *cutpnt + (iwork[coltyp + 1] + iwork[coltyp + 2]) * (*n - *cutpnt) + iq2; dlaed3_(&k, n, cutpnt, &d__[1], &q[q_offset], ldq, rho, &work[idlmda], &work[iq2], &iwork[indxc], &iwork[coltyp], &work[iw], &work[ is], info); if (*info != 0) { goto L20; } /* Prepare the INDXQ sorting permutation. */ n1 = k; n2 = *n - k; dlamrg_(&n1, &n2, &d__[1], &c__1, &c_n1, &indxq[1]); } else { i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { indxq[i__] = i__; /* L10: */ } } L20: return 0; /* End of DLAED1 */ } /* dlaed1_ */ #undef q_ref