#include "blaswrap.h" /* -- translated by f2c (version 19990503). You must link the resulting object file with the libraries: -lf2c -lm (in that order) */ #include "f2c.h" /* Common Block Declarations */ struct { integer infot, nunit; logical ok, lerr; } infoc_; #define infoc_1 infoc_ struct { char srnamt[6]; } srnamc_; #define srnamc_1 srnamc_ /* Table of constant values */ static integer c__1 = 1; static integer c__2 = 2; static integer c__0 = 0; static integer c_n1 = -1; static real c_b48 = 0.f; static real c_b49 = 1.f; static integer c__6 = 6; static integer c__7 = 7; /* Subroutine */ int sdrvgb_(logical *dotype, integer *nn, integer *nval, integer *nrhs, real *thresh, logical *tsterr, real *a, integer *la, real *afb, integer *lafb, real *asav, real *b, real *bsav, real *x, real *xact, real *s, real *work, real *rwork, integer *iwork, integer *nout) { /* Initialized data */ static integer iseedy[4] = { 1988,1989,1990,1991 }; static char transs[1*3] = "N" "T" "C"; static char facts[1*3] = "F" "N" "E"; static char equeds[1*4] = "N" "R" "C" "B"; /* Format strings */ static char fmt_9999[] = "(\002 *** In SDRVGB, LA=\002,i5,\002 is too sm" "all for N=\002,i5,\002, KU=\002,i5,\002, KL=\002,i5,/\002 ==> In" "crease LA to at least \002,i5)"; static char fmt_9998[] = "(\002 *** In SDRVGB, LAFB=\002,i5,\002 is too " "small for N=\002,i5,\002, KU=\002,i5,\002, KL=\002,i5,/\002 ==> " "Increase LAFB to at least \002,i5)"; static char fmt_9997[] = "(1x,a6,\002, N=\002,i5,\002, KL=\002,i5,\002, " "KU=\002,i5,\002, type \002,i1,\002, test(\002,i1,\002)=\002,g12." "5)"; static char fmt_9995[] = "(1x,a6,\002( '\002,a1,\002','\002,a1,\002'," "\002,i5,\002,\002,i5,\002,\002,i5,\002,...), EQUED='\002,a1,\002" "', type \002,i1,\002, test(\002,i1,\002)=\002,g12.5)"; static char fmt_9996[] = "(1x,a6,\002( '\002,a1,\002','\002,a1,\002'," "\002,i5,\002,\002,i5,\002,\002,i5,\002,...), type \002,i1,\002, " "test(\002,i1,\002)=\002,g12.5)"; /* System generated locals */ address a__1[2]; integer i__1, i__2, i__3, i__4, i__5, i__6, i__7, i__8, i__9, i__10, i__11[2]; real r__1, r__2, r__3; char ch__1[2]; /* Builtin functions Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen); integer s_wsfe(cilist *), do_fio(integer *, char *, ftnlen), e_wsfe(void); /* Subroutine */ int s_cat(char *, char **, integer *, integer *, ftnlen); /* Local variables */ static char fact[1]; static integer ioff, mode; static real amax; static char path[3]; static integer imat, info; static char dist[1], type__[1]; static integer nrun, ldafb, i__, j, k, n, ifact, nfail, iseed[4], nfact; extern logical lsame_(char *, char *); extern /* Subroutine */ int sgbt01_(integer *, integer *, integer *, integer *, real *, integer *, real *, integer *, integer *, real * , real *); static char equed[1]; static integer nbmin; static real rcond, roldc; extern /* Subroutine */ int sgbt02_(char *, integer *, integer *, integer *, integer *, integer *, real *, integer *, real *, integer *, real *, integer *, real *); static integer nimat; static real roldi; extern doublereal sget06_(real *, real *); extern /* Subroutine */ int sgbt05_(char *, integer *, integer *, integer *, integer *, real *, integer *, real *, integer *, real *, integer *, real *, integer *, real *, real *, real *); static real anorm; static integer itran; extern /* Subroutine */ int sget04_(integer *, integer *, real *, integer *, real *, integer *, real *, real *); static logical equil; static real roldo; extern /* Subroutine */ int sgbsv_(integer *, integer *, integer *, integer *, real *, integer *, integer *, real *, integer *, integer *); static char trans[1]; static integer izero, nerrs, i1, i2, k1; static logical zerot; static char xtype[1]; extern /* Subroutine */ int slatb4_(char *, integer *, integer *, integer *, char *, integer *, integer *, real *, integer *, real *, char * ), aladhd_(integer *, char *); static integer nb, in, kl; extern /* Subroutine */ int alaerh_(char *, char *, integer *, integer *, char *, integer *, integer *, integer *, integer *, integer *, integer *, integer *, integer *, integer *); static logical prefac; static integer ku, nt; static real colcnd; extern doublereal slangb_(char *, integer *, integer *, integer *, real *, integer *, real *), slamch_(char *); static real rcondc; extern doublereal slange_(char *, integer *, integer *, real *, integer *, real *); static logical nofact; extern /* Subroutine */ int slaqgb_(integer *, integer *, integer *, integer *, real *, integer *, real *, real *, real *, real *, real *, char *); static integer iequed; static real rcondi; extern doublereal slantb_(char *, char *, char *, integer *, integer *, real *, integer *, real *); static real cndnum, anormi, rcondo, ainvnm; extern /* Subroutine */ int alasvm_(char *, integer *, integer *, integer *, integer *); static logical trfcon; static real anormo, rowcnd; extern /* Subroutine */ int sgbequ_(integer *, integer *, integer *, integer *, real *, integer *, real *, real *, real *, real *, real *, integer *), sgbtrf_(integer *, integer *, integer *, integer *, real *, integer *, integer *, integer *), slacpy_(char *, integer *, integer *, real *, integer *, real *, integer *), slarhs_(char *, char *, char *, char *, integer *, integer *, integer *, integer *, integer *, real *, integer *, real *, integer *, real *, integer *, integer *, integer *); static real anrmpv; extern /* Subroutine */ int sgbtrs_(char *, integer *, integer *, integer *, integer *, real *, integer *, integer *, real *, integer *, integer *), slaset_(char *, integer *, integer *, real *, real *, real *, integer *), slatms_(integer *, integer *, char *, integer *, char *, real *, integer *, real *, real *, integer *, integer *, char *, real *, integer *, real *, integer * ), xlaenv_(integer *, integer *), sgbsvx_( char *, char *, integer *, integer *, integer *, integer *, real * , integer *, real *, integer *, integer *, char *, real *, real *, real *, integer *, real *, integer *, real *, real *, real *, real *, integer *, integer *); static real result[7], rpvgrw; extern /* Subroutine */ int serrvx_(char *, integer *); static integer lda, ldb, ikl, nkl, iku, nku; /* Fortran I/O blocks */ static cilist io___26 = { 0, 0, 0, fmt_9999, 0 }; static cilist io___27 = { 0, 0, 0, fmt_9998, 0 }; static cilist io___65 = { 0, 0, 0, fmt_9997, 0 }; static cilist io___72 = { 0, 0, 0, fmt_9995, 0 }; static cilist io___73 = { 0, 0, 0, fmt_9996, 0 }; static cilist io___74 = { 0, 0, 0, fmt_9995, 0 }; static cilist io___75 = { 0, 0, 0, fmt_9996, 0 }; static cilist io___76 = { 0, 0, 0, fmt_9995, 0 }; static cilist io___77 = { 0, 0, 0, fmt_9996, 0 }; static cilist io___78 = { 0, 0, 0, fmt_9995, 0 }; static cilist io___79 = { 0, 0, 0, fmt_9996, 0 }; /* -- LAPACK test routine (version 3.0) -- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., Courant Institute, Argonne National Lab, and Rice University June 30, 1999 Purpose ======= SDRVGB tests the driver routines SGBSV and -SVX. Arguments ========= DOTYPE (input) LOGICAL array, dimension (NTYPES) The matrix types to be used for testing. Matrices of type j (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) = .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used. NN (input) INTEGER The number of values of N contained in the vector NVAL. NVAL (input) INTEGER array, dimension (NN) The values of the matrix column dimension N. NRHS (input) INTEGER The number of right hand side vectors to be generated for each linear system. THRESH (input) REAL The threshold value for the test ratios. A result is included in the output file if RESULT >= THRESH. To have every test ratio printed, use THRESH = 0. TSTERR (input) LOGICAL Flag that indicates whether error exits are to be tested. A (workspace) REAL array, dimension (LA) LA (input) INTEGER The length of the array A. LA >= (2*NMAX-1)*NMAX where NMAX is the largest entry in NVAL. AFB (workspace) REAL array, dimension (LAFB) LAFB (input) INTEGER The length of the array AFB. LAFB >= (3*NMAX-2)*NMAX where NMAX is the largest entry in NVAL. ASAV (workspace) REAL array, dimension (LA) B (workspace) REAL array, dimension (NMAX*NRHS) BSAV (workspace) REAL array, dimension (NMAX*NRHS) X (workspace) REAL array, dimension (NMAX*NRHS) XACT (workspace) REAL array, dimension (NMAX*NRHS) S (workspace) REAL array, dimension (2*NMAX) WORK (workspace) REAL array, dimension (NMAX*max(3,NRHS,NMAX)) RWORK (workspace) REAL array, dimension (max(NMAX,2*NRHS)) IWORK (workspace) INTEGER array, dimension (2*NMAX) NOUT (input) INTEGER The unit number for output. ===================================================================== Parameter adjustments */ --iwork; --rwork; --work; --s; --xact; --x; --bsav; --b; --asav; --afb; --a; --nval; --dotype; /* Function Body Initialize constants and the random number seed. */ s_copy(path, "Single precision", (ftnlen)1, (ftnlen)16); s_copy(path + 1, "GB", (ftnlen)2, (ftnlen)2); nrun = 0; nfail = 0; nerrs = 0; for (i__ = 1; i__ <= 4; ++i__) { iseed[i__ - 1] = iseedy[i__ - 1]; /* L10: */ } /* Test the error exits */ if (*tsterr) { serrvx_(path, nout); } infoc_1.infot = 0; /* Set the block size and minimum block size for testing. */ nb = 1; nbmin = 2; xlaenv_(&c__1, &nb); xlaenv_(&c__2, &nbmin); /* Do for each value of N in NVAL */ i__1 = *nn; for (in = 1; in <= i__1; ++in) { n = nval[in]; ldb = max(n,1); *(unsigned char *)xtype = 'N'; /* Set limits on the number of loop iterations. Computing MAX */ i__2 = 1, i__3 = min(n,4); nkl = max(i__2,i__3); if (n == 0) { nkl = 1; } nku = nkl; nimat = 8; if (n <= 0) { nimat = 1; } i__2 = nkl; for (ikl = 1; ikl <= i__2; ++ikl) { /* Do for KL = 0, N-1, (3N-1)/4, and (N+1)/4. This order makes it easier to skip redundant values for small values of N. */ if (ikl == 1) { kl = 0; } else if (ikl == 2) { /* Computing MAX */ i__3 = n - 1; kl = max(i__3,0); } else if (ikl == 3) { kl = (n * 3 - 1) / 4; } else if (ikl == 4) { kl = (n + 1) / 4; } i__3 = nku; for (iku = 1; iku <= i__3; ++iku) { /* Do for KU = 0, N-1, (3N-1)/4, and (N+1)/4. This order makes it easier to skip redundant values for small values of N. */ if (iku == 1) { ku = 0; } else if (iku == 2) { /* Computing MAX */ i__4 = n - 1; ku = max(i__4,0); } else if (iku == 3) { ku = (n * 3 - 1) / 4; } else if (iku == 4) { ku = (n + 1) / 4; } /* Check that A and AFB are big enough to generate this matrix. */ lda = kl + ku + 1; ldafb = (kl << 1) + ku + 1; if (lda * n > *la || ldafb * n > *lafb) { if (nfail == 0 && nerrs == 0) { aladhd_(nout, path); } if (lda * n > *la) { io___26.ciunit = *nout; s_wsfe(&io___26); do_fio(&c__1, (char *)&(*la), (ftnlen)sizeof(integer)) ; do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&kl, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&ku, (ftnlen)sizeof(integer)); i__4 = n * (kl + ku + 1); do_fio(&c__1, (char *)&i__4, (ftnlen)sizeof(integer)); e_wsfe(); ++nerrs; } if (ldafb * n > *lafb) { io___27.ciunit = *nout; s_wsfe(&io___27); do_fio(&c__1, (char *)&(*lafb), (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&kl, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&ku, (ftnlen)sizeof(integer)); i__4 = n * ((kl << 1) + ku + 1); do_fio(&c__1, (char *)&i__4, (ftnlen)sizeof(integer)); e_wsfe(); ++nerrs; } goto L130; } i__4 = nimat; for (imat = 1; imat <= i__4; ++imat) { /* Do the tests only if DOTYPE( IMAT ) is true. */ if (! dotype[imat]) { goto L120; } /* Skip types 2, 3, or 4 if the matrix is too small. */ zerot = imat >= 2 && imat <= 4; if (zerot && n < imat - 1) { goto L120; } /* Set up parameters with SLATB4 and generate a test matrix with SLATMS. */ slatb4_(path, &imat, &n, &n, type__, &kl, &ku, &anorm, & mode, &cndnum, dist); rcondc = 1.f / cndnum; s_copy(srnamc_1.srnamt, "SLATMS", (ftnlen)6, (ftnlen)6); slatms_(&n, &n, dist, iseed, type__, &rwork[1], &mode, & cndnum, &anorm, &kl, &ku, "Z", &a[1], &lda, &work[ 1], &info); /* Check the error code from SLATMS. */ if (info != 0) { alaerh_(path, "SLATMS", &info, &c__0, " ", &n, &n, & kl, &ku, &c_n1, &imat, &nfail, &nerrs, nout); goto L120; } /* For types 2, 3, and 4, zero one or more columns of the matrix to test that INFO is returned correctly. */ izero = 0; if (zerot) { if (imat == 2) { izero = 1; } else if (imat == 3) { izero = n; } else { izero = n / 2 + 1; } ioff = (izero - 1) * lda; if (imat < 4) { /* Computing MAX */ i__5 = 1, i__6 = ku + 2 - izero; i1 = max(i__5,i__6); /* Computing MIN */ i__5 = kl + ku + 1, i__6 = ku + 1 + (n - izero); i2 = min(i__5,i__6); i__5 = i2; for (i__ = i1; i__ <= i__5; ++i__) { a[ioff + i__] = 0.f; /* L20: */ } } else { i__5 = n; for (j = izero; j <= i__5; ++j) { /* Computing MAX */ i__6 = 1, i__7 = ku + 2 - j; /* Computing MIN */ i__9 = kl + ku + 1, i__10 = ku + 1 + (n - j); i__8 = min(i__9,i__10); for (i__ = max(i__6,i__7); i__ <= i__8; ++i__) { a[ioff + i__] = 0.f; /* L30: */ } ioff += lda; /* L40: */ } } } /* Save a copy of the matrix A in ASAV. */ i__5 = kl + ku + 1; slacpy_("Full", &i__5, &n, &a[1], &lda, &asav[1], &lda); for (iequed = 1; iequed <= 4; ++iequed) { *(unsigned char *)equed = *(unsigned char *)&equeds[ iequed - 1]; if (iequed == 1) { nfact = 3; } else { nfact = 1; } i__5 = nfact; for (ifact = 1; ifact <= i__5; ++ifact) { *(unsigned char *)fact = *(unsigned char *)&facts[ ifact - 1]; prefac = lsame_(fact, "F"); nofact = lsame_(fact, "N"); equil = lsame_(fact, "E"); if (zerot) { if (prefac) { goto L100; } rcondo = 0.f; rcondi = 0.f; } else if (! nofact) { /* Compute the condition number for comparison with the value returned by SGESVX (FACT = 'N' reuses the condition number from the previous iteration with FACT = 'F'). */ i__8 = kl + ku + 1; slacpy_("Full", &i__8, &n, &asav[1], &lda, & afb[kl + 1], &ldafb); if (equil || iequed > 1) { /* Compute row and column scale factors to equilibrate the matrix A. */ sgbequ_(&n, &n, &kl, &ku, &afb[kl + 1], & ldafb, &s[1], &s[n + 1], &rowcnd, &colcnd, &amax, &info); if (info == 0 && n > 0) { if (lsame_(equed, "R")) { rowcnd = 0.f; colcnd = 1.f; } else if (lsame_(equed, "C")) { rowcnd = 1.f; colcnd = 0.f; } else if (lsame_(equed, "B")) { rowcnd = 0.f; colcnd = 0.f; } /* Equilibrate the matrix. */ slaqgb_(&n, &n, &kl, &ku, &afb[kl + 1] , &ldafb, &s[1], &s[n + 1], & rowcnd, &colcnd, &amax, equed); } } /* Save the condition number of the non-equilibrated system for use in SGET04. */ if (equil) { roldo = rcondo; roldi = rcondi; } /* Compute the 1-norm and infinity-norm of A. */ anormo = slangb_("1", &n, &kl, &ku, &afb[kl + 1], &ldafb, &rwork[1]); anormi = slangb_("I", &n, &kl, &ku, &afb[kl + 1], &ldafb, &rwork[1]); /* Factor the matrix A. */ sgbtrf_(&n, &n, &kl, &ku, &afb[1], &ldafb, & iwork[1], &info); /* Form the inverse of A. */ slaset_("Full", &n, &n, &c_b48, &c_b49, &work[ 1], &ldb); s_copy(srnamc_1.srnamt, "SGBTRS", (ftnlen)6, ( ftnlen)6); sgbtrs_("No transpose", &n, &kl, &ku, &n, & afb[1], &ldafb, &iwork[1], &work[1], & ldb, &info); /* Compute the 1-norm condition number of A. */ ainvnm = slange_("1", &n, &n, &work[1], &ldb, &rwork[1]); if (anormo <= 0.f || ainvnm <= 0.f) { rcondo = 1.f; } else { rcondo = 1.f / anormo / ainvnm; } /* Compute the infinity-norm condition number of A. */ ainvnm = slange_("I", &n, &n, &work[1], &ldb, &rwork[1]); if (anormi <= 0.f || ainvnm <= 0.f) { rcondi = 1.f; } else { rcondi = 1.f / anormi / ainvnm; } } for (itran = 1; itran <= 3; ++itran) { /* Do for each value of TRANS. */ *(unsigned char *)trans = *(unsigned char *)& transs[itran - 1]; if (itran == 1) { rcondc = rcondo; } else { rcondc = rcondi; } /* Restore the matrix A. */ i__8 = kl + ku + 1; slacpy_("Full", &i__8, &n, &asav[1], &lda, &a[ 1], &lda); /* Form an exact solution and set the right hand side. */ s_copy(srnamc_1.srnamt, "SLARHS", (ftnlen)6, ( ftnlen)6); slarhs_(path, xtype, "Full", trans, &n, &n, & kl, &ku, nrhs, &a[1], &lda, &xact[1], &ldb, &b[1], &ldb, iseed, &info); *(unsigned char *)xtype = 'C'; slacpy_("Full", &n, nrhs, &b[1], &ldb, &bsav[ 1], &ldb); if (nofact && itran == 1) { /* --- Test SGBSV --- Compute the LU factorization of the matrix and solve the system. */ i__8 = kl + ku + 1; slacpy_("Full", &i__8, &n, &a[1], &lda, & afb[kl + 1], &ldafb); slacpy_("Full", &n, nrhs, &b[1], &ldb, &x[ 1], &ldb); s_copy(srnamc_1.srnamt, "SGBSV ", (ftnlen) 6, (ftnlen)6); sgbsv_(&n, &kl, &ku, nrhs, &afb[1], & ldafb, &iwork[1], &x[1], &ldb, & info); /* Check error code from SGBSV . */ if (info != izero) { alaerh_(path, "SGBSV ", &info, &izero, " ", &n, &n, &kl, &ku, nrhs, &imat, &nfail, &nerrs, nout); } /* Reconstruct matrix from factors and compute residual. */ sgbt01_(&n, &n, &kl, &ku, &a[1], &lda, & afb[1], &ldafb, &iwork[1], &work[ 1], result); nt = 1; if (izero == 0) { /* Compute residual of the computed solution. */ slacpy_("Full", &n, nrhs, &b[1], &ldb, &work[1], &ldb); sgbt02_("No transpose", &n, &n, &kl, & ku, nrhs, &a[1], &lda, &x[1], &ldb, &work[1], &ldb, &result[ 1]); /* Check solution from generated exact solution. */ sget04_(&n, nrhs, &x[1], &ldb, &xact[ 1], &ldb, &rcondc, &result[2]) ; nt = 3; } /* Print information about the tests that did not pass the threshold. */ i__8 = nt; for (k = 1; k <= i__8; ++k) { if (result[k - 1] >= *thresh) { if (nfail == 0 && nerrs == 0) { aladhd_(nout, path); } io___65.ciunit = *nout; s_wsfe(&io___65); do_fio(&c__1, "SGBSV ", (ftnlen)6) ; do_fio(&c__1, (char *)&n, (ftnlen) sizeof(integer)); do_fio(&c__1, (char *)&kl, ( ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&ku, ( ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&imat, ( ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&k, (ftnlen) sizeof(integer)); do_fio(&c__1, (char *)&result[k - 1], (ftnlen)sizeof(real)); e_wsfe(); ++nfail; } /* L50: */ } nrun += nt; } /* --- Test SGBSVX --- */ if (! prefac) { i__8 = (kl << 1) + ku + 1; slaset_("Full", &i__8, &n, &c_b48, &c_b48, &afb[1], &ldafb); } slaset_("Full", &n, nrhs, &c_b48, &c_b48, &x[ 1], &ldb); if (iequed > 1 && n > 0) { /* Equilibrate the matrix if FACT = 'F' and EQUED = 'R', 'C', or 'B'. */ slaqgb_(&n, &n, &kl, &ku, &a[1], &lda, &s[ 1], &s[n + 1], &rowcnd, &colcnd, & amax, equed); } /* Solve the system and compute the condition number and error bounds using SGBSVX. */ s_copy(srnamc_1.srnamt, "SGBSVX", (ftnlen)6, ( ftnlen)6); sgbsvx_(fact, trans, &n, &kl, &ku, nrhs, &a[1] , &lda, &afb[1], &ldafb, &iwork[1], equed, &s[1], &s[n + 1], &b[1], &ldb, &x[1], &ldb, &rcond, &rwork[1], & rwork[*nrhs + 1], &work[1], &iwork[n + 1], &info); /* Check the error code from SGBSVX. */ if (info != izero) { /* Writing concatenation */ i__11[0] = 1, a__1[0] = fact; i__11[1] = 1, a__1[1] = trans; s_cat(ch__1, a__1, i__11, &c__2, (ftnlen) 2); alaerh_(path, "SGBSVX", &info, &izero, ch__1, &n, &n, &kl, &ku, nrhs, & imat, &nfail, &nerrs, nout); } /* Compare WORK(1) from SGBSVX with the computed reciprocal pivot growth factor RPVGRW */ if (info != 0) { anrmpv = 0.f; i__8 = info; for (j = 1; j <= i__8; ++j) { /* Computing MAX */ i__6 = ku + 2 - j; /* Computing MIN */ i__9 = n + ku + 1 - j, i__10 = kl + ku + 1; i__7 = min(i__9,i__10); for (i__ = max(i__6,1); i__ <= i__7; ++i__) { /* Computing MAX */ r__2 = anrmpv, r__3 = (r__1 = a[ i__ + (j - 1) * lda], dabs(r__1)); anrmpv = dmax(r__2,r__3); /* L60: */ } /* L70: */ } /* Computing MIN */ i__7 = info - 1, i__6 = kl + ku; i__8 = min(i__7,i__6); /* Computing MAX */ i__9 = 1, i__10 = kl + ku + 2 - info; rpvgrw = slantb_("M", "U", "N", &info, & i__8, &afb[max(i__9,i__10)], & ldafb, &work[1]); if (rpvgrw == 0.f) { rpvgrw = 1.f; } else { rpvgrw = anrmpv / rpvgrw; } } else { i__8 = kl + ku; rpvgrw = slantb_("M", "U", "N", &n, &i__8, &afb[1], &ldafb, &work[1]); if (rpvgrw == 0.f) { rpvgrw = 1.f; } else { rpvgrw = slangb_("M", &n, &kl, &ku, & a[1], &lda, &work[1]) / rpvgrw; } } result[6] = (r__1 = rpvgrw - work[1], dabs( r__1)) / dmax(work[1],rpvgrw) / slamch_("E"); if (! prefac) { /* Reconstruct matrix from factors and compute residual. */ sgbt01_(&n, &n, &kl, &ku, &a[1], &lda, & afb[1], &ldafb, &iwork[1], &work[ 1], result); k1 = 1; } else { k1 = 2; } if (info == 0) { trfcon = FALSE_; /* Compute residual of the computed solution. */ slacpy_("Full", &n, nrhs, &bsav[1], &ldb, &work[1], &ldb); sgbt02_(trans, &n, &n, &kl, &ku, nrhs, & asav[1], &lda, &x[1], &ldb, &work[ 1], &ldb, &result[1]); /* Check solution from generated exact solution. */ if (nofact || prefac && lsame_(equed, "N")) { sget04_(&n, nrhs, &x[1], &ldb, &xact[ 1], &ldb, &rcondc, &result[2]) ; } else { if (itran == 1) { roldc = roldo; } else { roldc = roldi; } sget04_(&n, nrhs, &x[1], &ldb, &xact[ 1], &ldb, &roldc, &result[2]); } /* Check the error bounds from iterative refinement. */ sgbt05_(trans, &n, &kl, &ku, nrhs, &asav[ 1], &lda, &b[1], &ldb, &x[1], & ldb, &xact[1], &ldb, &rwork[1], & rwork[*nrhs + 1], &result[3]); } else { trfcon = TRUE_; } /* Compare RCOND from SGBSVX with the computed value in RCONDC. */ result[5] = sget06_(&rcond, &rcondc); /* Print information about the tests that did not pass the threshold. */ if (! trfcon) { for (k = k1; k <= 7; ++k) { if (result[k - 1] >= *thresh) { if (nfail == 0 && nerrs == 0) { aladhd_(nout, path); } if (prefac) { io___72.ciunit = *nout; s_wsfe(&io___72); do_fio(&c__1, "SGBSVX", (ftnlen)6); do_fio(&c__1, fact, (ftnlen)1); do_fio(&c__1, trans, (ftnlen)1); do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&kl, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&ku, (ftnlen)sizeof(integer)); do_fio(&c__1, equed, (ftnlen)1); do_fio(&c__1, (char *)&imat, (ftnlen)sizeof(integer) ); do_fio(&c__1, (char *)&k, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&result[k - 1], (ftnlen) sizeof(real)); e_wsfe(); } else { io___73.ciunit = *nout; s_wsfe(&io___73); do_fio(&c__1, "SGBSVX", (ftnlen)6); do_fio(&c__1, fact, (ftnlen)1); do_fio(&c__1, trans, (ftnlen)1); do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&kl, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&ku, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&imat, (ftnlen)sizeof(integer) ); do_fio(&c__1, (char *)&k, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&result[k - 1], (ftnlen) sizeof(real)); e_wsfe(); } ++nfail; } /* L80: */ } nrun = nrun + 7 - k1; } else { if (result[0] >= *thresh && ! prefac) { if (nfail == 0 && nerrs == 0) { aladhd_(nout, path); } if (prefac) { io___74.ciunit = *nout; s_wsfe(&io___74); do_fio(&c__1, "SGBSVX", (ftnlen)6) ; do_fio(&c__1, fact, (ftnlen)1); do_fio(&c__1, trans, (ftnlen)1); do_fio(&c__1, (char *)&n, (ftnlen) sizeof(integer)); do_fio(&c__1, (char *)&kl, ( ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&ku, ( ftnlen)sizeof(integer)); do_fio(&c__1, equed, (ftnlen)1); do_fio(&c__1, (char *)&imat, ( ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&c__1, ( ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&result[0], (ftnlen)sizeof(real)); e_wsfe(); } else { io___75.ciunit = *nout; s_wsfe(&io___75); do_fio(&c__1, "SGBSVX", (ftnlen)6) ; do_fio(&c__1, fact, (ftnlen)1); do_fio(&c__1, trans, (ftnlen)1); do_fio(&c__1, (char *)&n, (ftnlen) sizeof(integer)); do_fio(&c__1, (char *)&kl, ( ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&ku, ( ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&imat, ( ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&c__1, ( ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&result[0], (ftnlen)sizeof(real)); e_wsfe(); } ++nfail; ++nrun; } if (result[5] >= *thresh) { if (nfail == 0 && nerrs == 0) { aladhd_(nout, path); } if (prefac) { io___76.ciunit = *nout; s_wsfe(&io___76); do_fio(&c__1, "SGBSVX", (ftnlen)6) ; do_fio(&c__1, fact, (ftnlen)1); do_fio(&c__1, trans, (ftnlen)1); do_fio(&c__1, (char *)&n, (ftnlen) sizeof(integer)); do_fio(&c__1, (char *)&kl, ( ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&ku, ( ftnlen)sizeof(integer)); do_fio(&c__1, equed, (ftnlen)1); do_fio(&c__1, (char *)&imat, ( ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&c__6, ( ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&result[5], (ftnlen)sizeof(real)); e_wsfe(); } else { io___77.ciunit = *nout; s_wsfe(&io___77); do_fio(&c__1, "SGBSVX", (ftnlen)6) ; do_fio(&c__1, fact, (ftnlen)1); do_fio(&c__1, trans, (ftnlen)1); do_fio(&c__1, (char *)&n, (ftnlen) sizeof(integer)); do_fio(&c__1, (char *)&kl, ( ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&ku, ( ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&imat, ( ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&c__6, ( ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&result[5], (ftnlen)sizeof(real)); e_wsfe(); } ++nfail; ++nrun; } if (result[6] >= *thresh) { if (nfail == 0 && nerrs == 0) { aladhd_(nout, path); } if (prefac) { io___78.ciunit = *nout; s_wsfe(&io___78); do_fio(&c__1, "SGBSVX", (ftnlen)6) ; do_fio(&c__1, fact, (ftnlen)1); do_fio(&c__1, trans, (ftnlen)1); do_fio(&c__1, (char *)&n, (ftnlen) sizeof(integer)); do_fio(&c__1, (char *)&kl, ( ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&ku, ( ftnlen)sizeof(integer)); do_fio(&c__1, equed, (ftnlen)1); do_fio(&c__1, (char *)&imat, ( ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&c__7, ( ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&result[6], (ftnlen)sizeof(real)); e_wsfe(); } else { io___79.ciunit = *nout; s_wsfe(&io___79); do_fio(&c__1, "SGBSVX", (ftnlen)6) ; do_fio(&c__1, fact, (ftnlen)1); do_fio(&c__1, trans, (ftnlen)1); do_fio(&c__1, (char *)&n, (ftnlen) sizeof(integer)); do_fio(&c__1, (char *)&kl, ( ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&ku, ( ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&imat, ( ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&c__7, ( ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&result[6], (ftnlen)sizeof(real)); e_wsfe(); } ++nfail; ++nrun; } } /* L90: */ } L100: ; } /* L110: */ } L120: ; } L130: ; } /* L140: */ } /* L150: */ } /* Print a summary of the results. */ alasvm_(path, nout, &nfail, &nrun, &nerrs); return 0; /* End of SDRVGB */ } /* sdrvgb_ */