#include "blaswrap.h"
/*  -- translated by f2c (version 19990503).
   You must link the resulting object file with the libraries:
	-lf2c -lm   (in that order)
*/

#include "f2c.h"

/* Table of constant values */

static doublereal c_b18 = 0.;
static integer c__0 = 0;
static doublereal c_b32 = 1.;
static integer c__4 = 4;
static integer c__6 = 6;
static integer c__1 = 1;
static integer c__2 = 2;
static logical c_false = FALSE_;
static integer c__3 = 3;
static integer c__5 = 5;
static logical c_true = TRUE_;
static integer c__22 = 22;

/* Subroutine */ int ddrvvx_(integer *nsizes, integer *nn, integer *ntypes, 
	logical *dotype, integer *iseed, doublereal *thresh, integer *niunit, 
	integer *nounit, doublereal *a, integer *lda, doublereal *h__, 
	doublereal *wr, doublereal *wi, doublereal *wr1, doublereal *wi1, 
	doublereal *vl, integer *ldvl, doublereal *vr, integer *ldvr, 
	doublereal *lre, integer *ldlre, doublereal *rcondv, doublereal *
	rcndv1, doublereal *rcdvin, doublereal *rconde, doublereal *rcnde1, 
	doublereal *rcdein, doublereal *scale, doublereal *scale1, doublereal 
	*result, doublereal *work, integer *nwork, integer *iwork, integer *
	info)
{
    /* Initialized data */

    static integer ktype[21] = { 1,2,3,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,9,9,9 };
    static integer kmagn[21] = { 1,1,1,1,1,1,2,3,1,1,1,1,1,1,1,1,2,3,1,2,3 };
    static integer kmode[21] = { 0,0,0,4,3,1,4,4,4,3,1,5,4,3,1,5,5,5,4,3,1 };
    static integer kconds[21] = { 0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,2,2,0,0,0 };
    static char bal[1*4] = "N" "P" "S" "B";

    /* Format strings */
    static char fmt_9992[] = "(\002 DDRVVX: \002,a,\002 returned INFO=\002,i"
	    "6,\002.\002,/9x,\002N=\002,i6,\002, JTYPE=\002,i6,\002, ISEED="
	    "(\002,3(i5,\002,\002),i5,\002)\002)";
    static char fmt_9999[] = "(/1x,a3,\002 -- Real Eigenvalue-Eigenvector De"
	    "composition\002,\002 Expert Driver\002,/\002 Matrix types (see D"
	    "DRVVX for details): \002)";
    static char fmt_9998[] = "(/\002 Special Matrices:\002,/\002  1=Zero mat"
	    "rix.             \002,\002           \002,\002  5=Diagonal: geom"
	    "etr. spaced entries.\002,/\002  2=Identity matrix.              "
	    "      \002,\002  6=Diagona\002,\002l: clustered entries.\002,"
	    "/\002  3=Transposed Jordan block.  \002,\002          \002,\002 "
	    " 7=Diagonal: large, evenly spaced.\002,/\002  \002,\0024=Diagona"
	    "l: evenly spaced entries.    \002,\002  8=Diagonal: s\002,\002ma"
	    "ll, evenly spaced.\002)";
    static char fmt_9997[] = "(\002 Dense, Non-Symmetric Matrices:\002,/\002"
	    "  9=Well-cond., ev\002,\002enly spaced eigenvals.\002,\002 14=Il"
	    "l-cond., geomet. spaced e\002,\002igenals.\002,/\002 10=Well-con"
	    "d., geom. spaced eigenvals. \002,\002 15=Ill-conditioned, cluste"
	    "red e.vals.\002,/\002 11=Well-cond\002,\002itioned, clustered e."
	    "vals. \002,\002 16=Ill-cond., random comp\002,\002lex \002,/\002"
	    " 12=Well-cond., random complex \002,\002         \002,\002 17=Il"
	    "l-cond., large rand. complx \002,/\002 13=Ill-condi\002,\002tion"
	    "ed, evenly spaced.     \002,\002 18=Ill-cond., small rand.\002"
	    ",\002 complx \002)";
    static char fmt_9996[] = "(\002 19=Matrix with random O(1) entries.   "
	    " \002,\002 21=Matrix \002,\002with small random entries.\002,"
	    "/\002 20=Matrix with large ran\002,\002dom entries.   \002,\002 "
	    "22=Matrix read from input file\002,/)";
    static char fmt_9995[] = "(\002 Tests performed with test threshold ="
	    "\002,f8.2,//\002 1 = | A VR - VR W | / ( n |A| ulp ) \002,/\002 "
	    "2 = | transpose(A) VL - VL W | / ( n |A| ulp ) \002,/\002 3 = | "
	    "|VR(i)| - 1 | / ulp \002,/\002 4 = | |VL(i)| - 1 | / ulp \002,"
	    "/\002 5 = 0 if W same no matter if VR or VL computed,\002,\002 1"
	    "/ulp otherwise\002,/\002 6 = 0 if VR same no matter what else co"
	    "mputed,\002,\002  1/ulp otherwise\002,/\002 7 = 0 if VL same no "
	    "matter what else computed,\002,\002  1/ulp otherwise\002,/\002 8"
	    " = 0 if RCONDV same no matter what else computed,\002,\002  1/ul"
	    "p otherwise\002,/\002 9 = 0 if SCALE, ILO, IHI, ABNRM same no ma"
	    "tter what else\002,\002 computed,  1/ulp otherwise\002,/\002 10 "
	    "= | RCONDV - RCONDV(precomputed) | / cond(RCONDV),\002,/\002 11 "
	    "= | RCONDE - RCONDE(precomputed) | / cond(RCONDE),\002)";
    static char fmt_9994[] = "(\002 BALANC='\002,a1,\002',N=\002,i4,\002,I"
	    "WK=\002,i1,\002, seed=\002,4(i4,\002,\002),\002 type \002,i2,"
	    "\002, test(\002,i2,\002)=\002,g10.3)";
    static char fmt_9993[] = "(\002 N=\002,i5,\002, input example =\002,i3"
	    ",\002,  test(\002,i2,\002)=\002,g10.3)";

    /* System generated locals */
    integer a_dim1, a_offset, h_dim1, h_offset, lre_dim1, lre_offset, vl_dim1,
	     vl_offset, vr_dim1, vr_offset, i__1, i__2, i__3;

    /* Builtin functions   
       Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen);
    double sqrt(doublereal);
    integer s_wsfe(cilist *), do_fio(integer *, char *, ftnlen), e_wsfe(void),
	     s_rsle(cilist *), do_lio(integer *, integer *, char *, ftnlen), 
	    e_rsle(void);

    /* Local variables */
    static integer ibal;
    static doublereal cond;
    static integer jcol;
    static char path[3];
    static integer nmax;
    static doublereal unfl, ovfl;
    static integer i__, j, n;
    static logical badnn;
    extern /* Subroutine */ int dget23_(logical *, char *, integer *, 
	    doublereal *, integer *, integer *, integer *, doublereal *, 
	    integer *, doublereal *, doublereal *, doublereal *, doublereal *,
	     doublereal *, doublereal *, integer *, doublereal *, integer *, 
	    doublereal *, integer *, doublereal *, doublereal *, doublereal *,
	     doublereal *, doublereal *, doublereal *, doublereal *, 
	    doublereal *, doublereal *, doublereal *, integer *, integer *, 
	    integer *);
    static integer nfail, imode, iinfo;
    static doublereal conds, anorm;
    static integer jsize, nerrs, itype, jtype, ntest;
    static doublereal rtulp;
    extern /* Subroutine */ int dlabad_(doublereal *, doublereal *);
    static char balanc[1];
    extern doublereal dlamch_(char *);
    static char adumma[1*1];
    extern /* Subroutine */ int dlatme_(integer *, char *, integer *, 
	    doublereal *, integer *, doublereal *, doublereal *, char *, char 
	    *, char *, char *, doublereal *, integer *, doublereal *, integer 
	    *, integer *, doublereal *, doublereal *, integer *, doublereal *,
	     integer *);
    static integer idumma[1];
    extern /* Subroutine */ int dlaset_(char *, integer *, integer *, 
	    doublereal *, doublereal *, doublereal *, integer *);
    static integer ioldsd[4];
    extern /* Subroutine */ int xerbla_(char *, integer *), dlatmr_(
	    integer *, integer *, char *, integer *, char *, doublereal *, 
	    integer *, doublereal *, doublereal *, char *, char *, doublereal 
	    *, integer *, doublereal *, doublereal *, integer *, doublereal *,
	     char *, integer *, integer *, integer *, doublereal *, 
	    doublereal *, char *, doublereal *, integer *, integer *, integer 
	    *), dlatms_(
	    integer *, integer *, char *, integer *, char *, doublereal *, 
	    integer *, doublereal *, doublereal *, integer *, integer *, char 
	    *, doublereal *, integer *, doublereal *, integer *), dlasum_(char *, integer *, integer *, integer *);
    static integer ntestf, nnwork;
    static doublereal rtulpi;
    static integer mtypes, ntestt;
    static doublereal ulpinv;
    static integer iwk;
    static doublereal ulp;

    /* Fortran I/O blocks */
    static cilist io___33 = { 0, 0, 0, fmt_9992, 0 };
    static cilist io___40 = { 0, 0, 0, fmt_9999, 0 };
    static cilist io___41 = { 0, 0, 0, fmt_9998, 0 };
    static cilist io___42 = { 0, 0, 0, fmt_9997, 0 };
    static cilist io___43 = { 0, 0, 0, fmt_9996, 0 };
    static cilist io___44 = { 0, 0, 0, fmt_9995, 0 };
    static cilist io___45 = { 0, 0, 0, fmt_9994, 0 };
    static cilist io___46 = { 0, 0, 1, 0, 0 };
    static cilist io___48 = { 0, 0, 0, 0, 0 };
    static cilist io___49 = { 0, 0, 0, 0, 0 };
    static cilist io___50 = { 0, 0, 0, fmt_9999, 0 };
    static cilist io___51 = { 0, 0, 0, fmt_9998, 0 };
    static cilist io___52 = { 0, 0, 0, fmt_9997, 0 };
    static cilist io___53 = { 0, 0, 0, fmt_9996, 0 };
    static cilist io___54 = { 0, 0, 0, fmt_9995, 0 };
    static cilist io___55 = { 0, 0, 0, fmt_9993, 0 };



#define a_ref(a_1,a_2) a[(a_2)*a_dim1 + a_1]


/*  -- LAPACK test routine (version 3.0) --   
       Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,   
       Courant Institute, Argonne National Lab, and Rice University   
       September 30, 1994   


    Purpose   
    =======   

       DDRVVX  checks the nonsymmetric eigenvalue problem expert driver   
       DGEEVX.   

       DDRVVX uses both test matrices generated randomly depending on   
       data supplied in the calling sequence, as well as on data   
       read from an input file and including precomputed condition   
       numbers to which it compares the ones it computes.   

       When DDRVVX is called, a number of matrix "sizes" ("n's") and a   
       number of matrix "types" are specified in the calling sequence.   
       For each size ("n") and each type of matrix, one matrix will be   
       generated and used to test the nonsymmetric eigenroutines.  For   
       each matrix, 9 tests will be performed:   

       (1)     | A * VR - VR * W | / ( n |A| ulp )   

         Here VR is the matrix of unit right eigenvectors.   
         W is a block diagonal matrix, with a 1x1 block for each   
         real eigenvalue and a 2x2 block for each complex conjugate   
         pair.  If eigenvalues j and j+1 are a complex conjugate pair,   
         so WR(j) = WR(j+1) = wr and WI(j) = - WI(j+1) = wi, then the   
         2 x 2 block corresponding to the pair will be:   

                 (  wr  wi  )   
                 ( -wi  wr  )   

         Such a block multiplying an n x 2 matrix  ( ur ui ) on the   
         right will be the same as multiplying  ur + i*ui  by  wr + i*wi.   

       (2)     | A**H * VL - VL * W**H | / ( n |A| ulp )   

         Here VL is the matrix of unit left eigenvectors, A**H is the   
         conjugate transpose of A, and W is as above.   

       (3)     | |VR(i)| - 1 | / ulp and largest component real   

         VR(i) denotes the i-th column of VR.   

       (4)     | |VL(i)| - 1 | / ulp and largest component real   

         VL(i) denotes the i-th column of VL.   

       (5)     W(full) = W(partial)   

         W(full) denotes the eigenvalues computed when VR, VL, RCONDV   
         and RCONDE are also computed, and W(partial) denotes the   
         eigenvalues computed when only some of VR, VL, RCONDV, and   
         RCONDE are computed.   

       (6)     VR(full) = VR(partial)   

         VR(full) denotes the right eigenvectors computed when VL, RCONDV   
         and RCONDE are computed, and VR(partial) denotes the result   
         when only some of VL and RCONDV are computed.   

       (7)     VL(full) = VL(partial)   

         VL(full) denotes the left eigenvectors computed when VR, RCONDV   
         and RCONDE are computed, and VL(partial) denotes the result   
         when only some of VR and RCONDV are computed.   

       (8)     0 if SCALE, ILO, IHI, ABNRM (full) =   
                    SCALE, ILO, IHI, ABNRM (partial)   
               1/ulp otherwise   

         SCALE, ILO, IHI and ABNRM describe how the matrix is balanced.   
         (full) is when VR, VL, RCONDE and RCONDV are also computed, and   
         (partial) is when some are not computed.   

       (9)     RCONDV(full) = RCONDV(partial)   

         RCONDV(full) denotes the reciprocal condition numbers of the   
         right eigenvectors computed when VR, VL and RCONDE are also   
         computed. RCONDV(partial) denotes the reciprocal condition   
         numbers when only some of VR, VL and RCONDE are computed.   

       The "sizes" are specified by an array NN(1:NSIZES); the value of   
       each element NN(j) specifies one size.   
       The "types" are specified by a logical array DOTYPE( 1:NTYPES );   
       if DOTYPE(j) is .TRUE., then matrix type "j" will be generated.   
       Currently, the list of possible types is:   

       (1)  The zero matrix.   
       (2)  The identity matrix.   
       (3)  A (transposed) Jordan block, with 1's on the diagonal.   

       (4)  A diagonal matrix with evenly spaced entries   
            1, ..., ULP  and random signs.   
            (ULP = (first number larger than 1) - 1 )   
       (5)  A diagonal matrix with geometrically spaced entries   
            1, ..., ULP  and random signs.   
       (6)  A diagonal matrix with "clustered" entries 1, ULP, ..., ULP   
            and random signs.   

       (7)  Same as (4), but multiplied by a constant near   
            the overflow threshold   
       (8)  Same as (4), but multiplied by a constant near   
            the underflow threshold   

       (9)  A matrix of the form  U' T U, where U is orthogonal and   
            T has evenly spaced entries 1, ..., ULP with random signs   
            on the diagonal and random O(1) entries in the upper   
            triangle.   

       (10) A matrix of the form  U' T U, where U is orthogonal and   
            T has geometrically spaced entries 1, ..., ULP with random   
            signs on the diagonal and random O(1) entries in the upper   
            triangle.   

       (11) A matrix of the form  U' T U, where U is orthogonal and   
            T has "clustered" entries 1, ULP,..., ULP with random   
            signs on the diagonal and random O(1) entries in the upper   
            triangle.   

       (12) A matrix of the form  U' T U, where U is orthogonal and   
            T has real or complex conjugate paired eigenvalues randomly   
            chosen from ( ULP, 1 ) and random O(1) entries in the upper   
            triangle.   

       (13) A matrix of the form  X' T X, where X has condition   
            SQRT( ULP ) and T has evenly spaced entries 1, ..., ULP   
            with random signs on the diagonal and random O(1) entries   
            in the upper triangle.   

       (14) A matrix of the form  X' T X, where X has condition   
            SQRT( ULP ) and T has geometrically spaced entries   
            1, ..., ULP with random signs on the diagonal and random   
            O(1) entries in the upper triangle.   

       (15) A matrix of the form  X' T X, where X has condition   
            SQRT( ULP ) and T has "clustered" entries 1, ULP,..., ULP   
            with random signs on the diagonal and random O(1) entries   
            in the upper triangle.   

       (16) A matrix of the form  X' T X, where X has condition   
            SQRT( ULP ) and T has real or complex conjugate paired   
            eigenvalues randomly chosen from ( ULP, 1 ) and random   
            O(1) entries in the upper triangle.   

       (17) Same as (16), but multiplied by a constant   
            near the overflow threshold   
       (18) Same as (16), but multiplied by a constant   
            near the underflow threshold   

       (19) Nonsymmetric matrix with random entries chosen from (-1,1).   
            If N is at least 4, all entries in first two rows and last   
            row, and first column and last two columns are zero.   
       (20) Same as (19), but multiplied by a constant   
            near the overflow threshold   
       (21) Same as (19), but multiplied by a constant   
            near the underflow threshold   

       In addition, an input file will be read from logical unit number   
       NIUNIT. The file contains matrices along with precomputed   
       eigenvalues and reciprocal condition numbers for the eigenvalues   
       and right eigenvectors. For these matrices, in addition to tests   
       (1) to (9) we will compute the following two tests:   

      (10)  |RCONDV - RCDVIN| / cond(RCONDV)   

         RCONDV is the reciprocal right eigenvector condition number   
         computed by DGEEVX and RCDVIN (the precomputed true value)   
         is supplied as input. cond(RCONDV) is the condition number of   
         RCONDV, and takes errors in computing RCONDV into account, so   
         that the resulting quantity should be O(ULP). cond(RCONDV) is   
         essentially given by norm(A)/RCONDE.   

      (11)  |RCONDE - RCDEIN| / cond(RCONDE)   

         RCONDE is the reciprocal eigenvalue condition number   
         computed by DGEEVX and RCDEIN (the precomputed true value)   
         is supplied as input.  cond(RCONDE) is the condition number   
         of RCONDE, and takes errors in computing RCONDE into account,   
         so that the resulting quantity should be O(ULP). cond(RCONDE)   
         is essentially given by norm(A)/RCONDV.   

    Arguments   
    ==========   

    NSIZES  (input) INTEGER   
            The number of sizes of matrices to use.  NSIZES must be at   
            least zero. If it is zero, no randomly generated matrices   
            are tested, but any test matrices read from NIUNIT will be   
            tested.   

    NN      (input) INTEGER array, dimension (NSIZES)   
            An array containing the sizes to be used for the matrices.   
            Zero values will be skipped.  The values must be at least   
            zero.   

    NTYPES  (input) INTEGER   
            The number of elements in DOTYPE. NTYPES must be at least   
            zero. If it is zero, no randomly generated test matrices   
            are tested, but and test matrices read from NIUNIT will be   
            tested. If it is MAXTYP+1 and NSIZES is 1, then an   
            additional type, MAXTYP+1 is defined, which is to use   
            whatever matrix is in A.  This is only useful if   
            DOTYPE(1:MAXTYP) is .FALSE. and DOTYPE(MAXTYP+1) is .TRUE. .   

    DOTYPE  (input) LOGICAL array, dimension (NTYPES)   
            If DOTYPE(j) is .TRUE., then for each size in NN a   
            matrix of that size and of type j will be generated.   
            If NTYPES is smaller than the maximum number of types   
            defined (PARAMETER MAXTYP), then types NTYPES+1 through   
            MAXTYP will not be generated.  If NTYPES is larger   
            than MAXTYP, DOTYPE(MAXTYP+1) through DOTYPE(NTYPES)   
            will be ignored.   

    ISEED   (input/output) INTEGER array, dimension (4)   
            On entry ISEED specifies the seed of the random number   
            generator. The array elements should be between 0 and 4095;   
            if not they will be reduced mod 4096.  Also, ISEED(4) must   
            be odd.  The random number generator uses a linear   
            congruential sequence limited to small integers, and so   
            should produce machine independent random numbers. The   
            values of ISEED are changed on exit, and can be used in the   
            next call to DDRVVX to continue the same random number   
            sequence.   

    THRESH  (input) DOUBLE PRECISION   
            A test will count as "failed" if the "error", computed as   
            described above, exceeds THRESH.  Note that the error   
            is scaled to be O(1), so THRESH should be a reasonably   
            small multiple of 1, e.g., 10 or 100.  In particular,   
            it should not depend on the precision (single vs. double)   
            or the size of the matrix.  It must be at least zero.   

    NIUNIT  (input) INTEGER   
            The FORTRAN unit number for reading in the data file of   
            problems to solve.   

    NOUNIT  (input) INTEGER   
            The FORTRAN unit number for printing out error messages   
            (e.g., if a routine returns INFO not equal to 0.)   

    A       (workspace) DOUBLE PRECISION array, dimension   
                        (LDA, max(NN,12))   
            Used to hold the matrix whose eigenvalues are to be   
            computed.  On exit, A contains the last matrix actually used.   

    LDA     (input) INTEGER   
            The leading dimension of the arrays A and H.   
            LDA >= max(NN,12), since 12 is the dimension of the largest   
            matrix in the precomputed input file.   

    H       (workspace) DOUBLE PRECISION array, dimension   
                        (LDA, max(NN,12))   
            Another copy of the test matrix A, modified by DGEEVX.   

    WR      (workspace) DOUBLE PRECISION array, dimension (max(NN))   
    WI      (workspace) DOUBLE PRECISION array, dimension (max(NN))   
            The real and imaginary parts of the eigenvalues of A.   
            On exit, WR + WI*i are the eigenvalues of the matrix in A.   

    WR1     (workspace) DOUBLE PRECISION array, dimension (max(NN,12))   
    WI1     (workspace) DOUBLE PRECISION array, dimension (max(NN,12))   
            Like WR, WI, these arrays contain the eigenvalues of A,   
            but those computed when DGEEVX only computes a partial   
            eigendecomposition, i.e. not the eigenvalues and left   
            and right eigenvectors.   

    VL      (workspace) DOUBLE PRECISION array, dimension   
                        (LDVL, max(NN,12))   
            VL holds the computed left eigenvectors.   

    LDVL    (input) INTEGER   
            Leading dimension of VL. Must be at least max(1,max(NN,12)).   

    VR      (workspace) DOUBLE PRECISION array, dimension   
                        (LDVR, max(NN,12))   
            VR holds the computed right eigenvectors.   

    LDVR    (input) INTEGER   
            Leading dimension of VR. Must be at least max(1,max(NN,12)).   

    LRE     (workspace) DOUBLE PRECISION array, dimension   
                        (LDLRE, max(NN,12))   
            LRE holds the computed right or left eigenvectors.   

    LDLRE   (input) INTEGER   
            Leading dimension of LRE. Must be at least max(1,max(NN,12))   

    RCONDV  (workspace) DOUBLE PRECISION array, dimension (N)   
            RCONDV holds the computed reciprocal condition numbers   
            for eigenvectors.   

    RCNDV1  (workspace) DOUBLE PRECISION array, dimension (N)   
            RCNDV1 holds more computed reciprocal condition numbers   
            for eigenvectors.   

    RCDVIN  (workspace) DOUBLE PRECISION array, dimension (N)   
            When COMP = .TRUE. RCDVIN holds the precomputed reciprocal   
            condition numbers for eigenvectors to be compared with   
            RCONDV.   

    RCONDE  (workspace) DOUBLE PRECISION array, dimension (N)   
            RCONDE holds the computed reciprocal condition numbers   
            for eigenvalues.   

    RCNDE1  (workspace) DOUBLE PRECISION array, dimension (N)   
            RCNDE1 holds more computed reciprocal condition numbers   
            for eigenvalues.   

    RCDEIN  (workspace) DOUBLE PRECISION array, dimension (N)   
            When COMP = .TRUE. RCDEIN holds the precomputed reciprocal   
            condition numbers for eigenvalues to be compared with   
            RCONDE.   

    RESULT  (output) DOUBLE PRECISION array, dimension (11)   
            The values computed by the seven tests described above.   
            The values are currently limited to 1/ulp, to avoid overflow.   

    WORK    (workspace) DOUBLE PRECISION array, dimension (NWORK)   

    NWORK   (input) INTEGER   
            The number of entries in WORK.  This must be at least   
            max(6*12+2*12**2,6*NN(j)+2*NN(j)**2) =   
            max(    360     ,6*NN(j)+2*NN(j)**2)    for all j.   

    IWORK   (workspace) INTEGER array, dimension (2*max(NN,12))   

    INFO    (output) INTEGER   
            If 0,  then successful exit.   
            If <0, then input paramter -INFO is incorrect.   
            If >0, DLATMR, SLATMS, SLATME or DGET23 returned an error   
                   code, and INFO is its absolute value.   

   -----------------------------------------------------------------------   

       Some Local Variables and Parameters:   
       ---- ----- --------- --- ----------   

       ZERO, ONE       Real 0 and 1.   
       MAXTYP          The number of types defined.   
       NMAX            Largest value in NN or 12.   
       NERRS           The number of tests which have exceeded THRESH   
       COND, CONDS,   
       IMODE           Values to be passed to the matrix generators.   
       ANORM           Norm of A; passed to matrix generators.   

       OVFL, UNFL      Overflow and underflow thresholds.   
       ULP, ULPINV     Finest relative precision and its inverse.   
       RTULP, RTULPI   Square roots of the previous 4 values.   

               The following four arrays decode JTYPE:   
       KTYPE(j)        The general type (1-10) for type "j".   
       KMODE(j)        The MODE value to be passed to the matrix   
                       generator for type "j".   
       KMAGN(j)        The order of magnitude ( O(1),   
                       O(overflow^(1/2) ), O(underflow^(1/2) )   
       KCONDS(j)       Selectw whether CONDS is to be 1 or   
                       1/sqrt(ulp).  (0 means irrelevant.)   

    =====================================================================   

       Parameter adjustments */
    --nn;
    --dotype;
    --iseed;
    h_dim1 = *lda;
    h_offset = 1 + h_dim1 * 1;
    h__ -= h_offset;
    a_dim1 = *lda;
    a_offset = 1 + a_dim1 * 1;
    a -= a_offset;
    --wr;
    --wi;
    --wr1;
    --wi1;
    vl_dim1 = *ldvl;
    vl_offset = 1 + vl_dim1 * 1;
    vl -= vl_offset;
    vr_dim1 = *ldvr;
    vr_offset = 1 + vr_dim1 * 1;
    vr -= vr_offset;
    lre_dim1 = *ldlre;
    lre_offset = 1 + lre_dim1 * 1;
    lre -= lre_offset;
    --rcondv;
    --rcndv1;
    --rcdvin;
    --rconde;
    --rcnde1;
    --rcdein;
    --scale;
    --scale1;
    --result;
    --work;
    --iwork;

    /* Function Body */

    s_copy(path, "Double precision", (ftnlen)1, (ftnlen)16);
    s_copy(path + 1, "VX", (ftnlen)2, (ftnlen)2);

/*     Check for errors */

    ntestt = 0;
    ntestf = 0;
    *info = 0;

/*     Important constants */

    badnn = FALSE_;

/*     12 is the largest dimension in the input file of precomputed   
       problems */

    nmax = 12;
    i__1 = *nsizes;
    for (j = 1; j <= i__1; ++j) {
/* Computing MAX */
	i__2 = nmax, i__3 = nn[j];
	nmax = max(i__2,i__3);
	if (nn[j] < 0) {
	    badnn = TRUE_;
	}
/* L10: */
    }

/*     Check for errors */

    if (*nsizes < 0) {
	*info = -1;
    } else if (badnn) {
	*info = -2;
    } else if (*ntypes < 0) {
	*info = -3;
    } else if (*thresh < 0.) {
	*info = -6;
    } else if (*lda < 1 || *lda < nmax) {
	*info = -10;
    } else if (*ldvl < 1 || *ldvl < nmax) {
	*info = -17;
    } else if (*ldvr < 1 || *ldvr < nmax) {
	*info = -19;
    } else if (*ldlre < 1 || *ldlre < nmax) {
	*info = -21;
    } else /* if(complicated condition) */ {
/* Computing 2nd power */
	i__1 = nmax;
	if (nmax * 6 + (i__1 * i__1 << 1) > *nwork) {
	    *info = -32;
	}
    }

    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("DDRVVX", &i__1);
	return 0;
    }

/*     If nothing to do check on NIUNIT */

    if (*nsizes == 0 || *ntypes == 0) {
	goto L160;
    }

/*     More Important constants */

    unfl = dlamch_("Safe minimum");
    ovfl = 1. / unfl;
    dlabad_(&unfl, &ovfl);
    ulp = dlamch_("Precision");
    ulpinv = 1. / ulp;
    rtulp = sqrt(ulp);
    rtulpi = 1. / rtulp;

/*     Loop over sizes, types */

    nerrs = 0;

    i__1 = *nsizes;
    for (jsize = 1; jsize <= i__1; ++jsize) {
	n = nn[jsize];
	if (*nsizes != 1) {
	    mtypes = min(21,*ntypes);
	} else {
	    mtypes = min(22,*ntypes);
	}

	i__2 = mtypes;
	for (jtype = 1; jtype <= i__2; ++jtype) {
	    if (! dotype[jtype]) {
		goto L140;
	    }

/*           Save ISEED in case of an error. */

	    for (j = 1; j <= 4; ++j) {
		ioldsd[j - 1] = iseed[j];
/* L20: */
	    }

/*           Compute "A"   

             Control parameters:   

             KMAGN  KCONDS  KMODE        KTYPE   
         =1  O(1)   1       clustered 1  zero   
         =2  large  large   clustered 2  identity   
         =3  small          exponential  Jordan   
         =4                 arithmetic   diagonal, (w/ eigenvalues)   
         =5                 random log   symmetric, w/ eigenvalues   
         =6                 random       general, w/ eigenvalues   
         =7                              random diagonal   
         =8                              random symmetric   
         =9                              random general   
         =10                             random triangular */

	    if (mtypes > 21) {
		goto L90;
	    }

	    itype = ktype[jtype - 1];
	    imode = kmode[jtype - 1];

/*           Compute norm */

	    switch (kmagn[jtype - 1]) {
		case 1:  goto L30;
		case 2:  goto L40;
		case 3:  goto L50;
	    }

L30:
	    anorm = 1.;
	    goto L60;

L40:
	    anorm = ovfl * ulp;
	    goto L60;

L50:
	    anorm = unfl * ulpinv;
	    goto L60;

L60:

	    dlaset_("Full", lda, &n, &c_b18, &c_b18, &a[a_offset], lda);
	    iinfo = 0;
	    cond = ulpinv;

/*           Special Matrices -- Identity & Jordan block   

                Zero */

	    if (itype == 1) {
		iinfo = 0;

	    } else if (itype == 2) {

/*              Identity */

		i__3 = n;
		for (jcol = 1; jcol <= i__3; ++jcol) {
		    a_ref(jcol, jcol) = anorm;
/* L70: */
		}

	    } else if (itype == 3) {

/*              Jordan Block */

		i__3 = n;
		for (jcol = 1; jcol <= i__3; ++jcol) {
		    a_ref(jcol, jcol) = anorm;
		    if (jcol > 1) {
			a_ref(jcol, jcol - 1) = 1.;
		    }
/* L80: */
		}

	    } else if (itype == 4) {

/*              Diagonal Matrix, [Eigen]values Specified */

		dlatms_(&n, &n, "S", &iseed[1], "S", &work[1], &imode, &cond, 
			&anorm, &c__0, &c__0, "N", &a[a_offset], lda, &work[n 
			+ 1], &iinfo);

	    } else if (itype == 5) {

/*              Symmetric, eigenvalues specified */

		dlatms_(&n, &n, "S", &iseed[1], "S", &work[1], &imode, &cond, 
			&anorm, &n, &n, "N", &a[a_offset], lda, &work[n + 1], 
			&iinfo);

	    } else if (itype == 6) {

/*              General, eigenvalues specified */

		if (kconds[jtype - 1] == 1) {
		    conds = 1.;
		} else if (kconds[jtype - 1] == 2) {
		    conds = rtulpi;
		} else {
		    conds = 0.;
		}

		*(unsigned char *)&adumma[0] = ' ';
		dlatme_(&n, "S", &iseed[1], &work[1], &imode, &cond, &c_b32, 
			adumma, "T", "T", "T", &work[n + 1], &c__4, &conds, &
			n, &n, &anorm, &a[a_offset], lda, &work[(n << 1) + 1],
			 &iinfo);

	    } else if (itype == 7) {

/*              Diagonal, random eigenvalues */

		dlatmr_(&n, &n, "S", &iseed[1], "S", &work[1], &c__6, &c_b32, 
			&c_b32, "T", "N", &work[n + 1], &c__1, &c_b32, &work[(
			n << 1) + 1], &c__1, &c_b32, "N", idumma, &c__0, &
			c__0, &c_b18, &anorm, "NO", &a[a_offset], lda, &iwork[
			1], &iinfo);

	    } else if (itype == 8) {

/*              Symmetric, random eigenvalues */

		dlatmr_(&n, &n, "S", &iseed[1], "S", &work[1], &c__6, &c_b32, 
			&c_b32, "T", "N", &work[n + 1], &c__1, &c_b32, &work[(
			n << 1) + 1], &c__1, &c_b32, "N", idumma, &n, &n, &
			c_b18, &anorm, "NO", &a[a_offset], lda, &iwork[1], &
			iinfo);

	    } else if (itype == 9) {

/*              General, random eigenvalues */

		dlatmr_(&n, &n, "S", &iseed[1], "N", &work[1], &c__6, &c_b32, 
			&c_b32, "T", "N", &work[n + 1], &c__1, &c_b32, &work[(
			n << 1) + 1], &c__1, &c_b32, "N", idumma, &n, &n, &
			c_b18, &anorm, "NO", &a[a_offset], lda, &iwork[1], &
			iinfo);
		if (n >= 4) {
		    dlaset_("Full", &c__2, &n, &c_b18, &c_b18, &a[a_offset], 
			    lda);
		    i__3 = n - 3;
		    dlaset_("Full", &i__3, &c__1, &c_b18, &c_b18, &a_ref(3, 1)
			    , lda);
		    i__3 = n - 3;
		    dlaset_("Full", &i__3, &c__2, &c_b18, &c_b18, &a_ref(3, n 
			    - 1), lda);
		    dlaset_("Full", &c__1, &n, &c_b18, &c_b18, &a_ref(n, 1), 
			    lda);
		}

	    } else if (itype == 10) {

/*              Triangular, random eigenvalues */

		dlatmr_(&n, &n, "S", &iseed[1], "N", &work[1], &c__6, &c_b32, 
			&c_b32, "T", "N", &work[n + 1], &c__1, &c_b32, &work[(
			n << 1) + 1], &c__1, &c_b32, "N", idumma, &n, &c__0, &
			c_b18, &anorm, "NO", &a[a_offset], lda, &iwork[1], &
			iinfo);

	    } else {

		iinfo = 1;
	    }

	    if (iinfo != 0) {
		io___33.ciunit = *nounit;
		s_wsfe(&io___33);
		do_fio(&c__1, "Generator", (ftnlen)9);
		do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer));
		do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer));
		e_wsfe();
		*info = abs(iinfo);
		return 0;
	    }

L90:

/*           Test for minimal and generous workspace */

	    for (iwk = 1; iwk <= 3; ++iwk) {
		if (iwk == 1) {
		    nnwork = n * 3;
		} else if (iwk == 2) {
/* Computing 2nd power */
		    i__3 = n;
		    nnwork = n * 6 + i__3 * i__3;
		} else {
/* Computing 2nd power */
		    i__3 = n;
		    nnwork = n * 6 + (i__3 * i__3 << 1);
		}
		nnwork = max(nnwork,1);

/*              Test for all balancing options */

		for (ibal = 1; ibal <= 4; ++ibal) {
		    *(unsigned char *)balanc = *(unsigned char *)&bal[ibal - 
			    1];

/*                 Perform tests */

		    dget23_(&c_false, balanc, &jtype, thresh, ioldsd, nounit, 
			    &n, &a[a_offset], lda, &h__[h_offset], &wr[1], &
			    wi[1], &wr1[1], &wi1[1], &vl[vl_offset], ldvl, &
			    vr[vr_offset], ldvr, &lre[lre_offset], ldlre, &
			    rcondv[1], &rcndv1[1], &rcdvin[1], &rconde[1], &
			    rcnde1[1], &rcdein[1], &scale[1], &scale1[1], &
			    result[1], &work[1], &nnwork, &iwork[1], info);

/*                 Check for RESULT(j) > THRESH */

		    ntest = 0;
		    nfail = 0;
		    for (j = 1; j <= 9; ++j) {
			if (result[j] >= 0.) {
			    ++ntest;
			}
			if (result[j] >= *thresh) {
			    ++nfail;
			}
/* L100: */
		    }

		    if (nfail > 0) {
			++ntestf;
		    }
		    if (ntestf == 1) {
			io___40.ciunit = *nounit;
			s_wsfe(&io___40);
			do_fio(&c__1, path, (ftnlen)3);
			e_wsfe();
			io___41.ciunit = *nounit;
			s_wsfe(&io___41);
			e_wsfe();
			io___42.ciunit = *nounit;
			s_wsfe(&io___42);
			e_wsfe();
			io___43.ciunit = *nounit;
			s_wsfe(&io___43);
			e_wsfe();
			io___44.ciunit = *nounit;
			s_wsfe(&io___44);
			do_fio(&c__1, (char *)&(*thresh), (ftnlen)sizeof(
				doublereal));
			e_wsfe();
			ntestf = 2;
		    }

		    for (j = 1; j <= 9; ++j) {
			if (result[j] >= *thresh) {
			    io___45.ciunit = *nounit;
			    s_wsfe(&io___45);
			    do_fio(&c__1, balanc, (ftnlen)1);
			    do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer))
				    ;
			    do_fio(&c__1, (char *)&iwk, (ftnlen)sizeof(
				    integer));
			    do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(
				    integer));
			    do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(
				    integer));
			    do_fio(&c__1, (char *)&j, (ftnlen)sizeof(integer))
				    ;
			    do_fio(&c__1, (char *)&result[j], (ftnlen)sizeof(
				    doublereal));
			    e_wsfe();
			}
/* L110: */
		    }

		    nerrs += nfail;
		    ntestt += ntest;

/* L120: */
		}
/* L130: */
	    }
L140:
	    ;
	}
/* L150: */
    }

L160:

/*     Read in data from file to check accuracy of condition estimation.   
       Assume input eigenvalues are sorted lexicographically (increasing   
       by real part, then decreasing by imaginary part) */

    jtype = 0;
L170:
    io___46.ciunit = *niunit;
    i__1 = s_rsle(&io___46);
    if (i__1 != 0) {
	goto L220;
    }
    i__1 = do_lio(&c__3, &c__1, (char *)&n, (ftnlen)sizeof(integer));
    if (i__1 != 0) {
	goto L220;
    }
    i__1 = e_rsle();
    if (i__1 != 0) {
	goto L220;
    }

/*     Read input data until N=0 */

    if (n == 0) {
	goto L220;
    }
    ++jtype;
    iseed[1] = jtype;
    i__1 = n;
    for (i__ = 1; i__ <= i__1; ++i__) {
	io___48.ciunit = *niunit;
	s_rsle(&io___48);
	i__2 = n;
	for (j = 1; j <= i__2; ++j) {
	    do_lio(&c__5, &c__1, (char *)&a_ref(i__, j), (ftnlen)sizeof(
		    doublereal));
	}
	e_rsle();
/* L180: */
    }
    i__1 = n;
    for (i__ = 1; i__ <= i__1; ++i__) {
	io___49.ciunit = *niunit;
	s_rsle(&io___49);
	do_lio(&c__5, &c__1, (char *)&wr1[i__], (ftnlen)sizeof(doublereal));
	do_lio(&c__5, &c__1, (char *)&wi1[i__], (ftnlen)sizeof(doublereal));
	do_lio(&c__5, &c__1, (char *)&rcdein[i__], (ftnlen)sizeof(doublereal))
		;
	do_lio(&c__5, &c__1, (char *)&rcdvin[i__], (ftnlen)sizeof(doublereal))
		;
	e_rsle();
/* L190: */
    }
/* Computing 2nd power */
    i__2 = n;
    i__1 = n * 6 + (i__2 * i__2 << 1);
    dget23_(&c_true, "N", &c__22, thresh, &iseed[1], nounit, &n, &a[a_offset],
	     lda, &h__[h_offset], &wr[1], &wi[1], &wr1[1], &wi1[1], &vl[
	    vl_offset], ldvl, &vr[vr_offset], ldvr, &lre[lre_offset], ldlre, &
	    rcondv[1], &rcndv1[1], &rcdvin[1], &rconde[1], &rcnde1[1], &
	    rcdein[1], &scale[1], &scale1[1], &result[1], &work[1], &i__1, &
	    iwork[1], info);

/*     Check for RESULT(j) > THRESH */

    ntest = 0;
    nfail = 0;
    for (j = 1; j <= 11; ++j) {
	if (result[j] >= 0.) {
	    ++ntest;
	}
	if (result[j] >= *thresh) {
	    ++nfail;
	}
/* L200: */
    }

    if (nfail > 0) {
	++ntestf;
    }
    if (ntestf == 1) {
	io___50.ciunit = *nounit;
	s_wsfe(&io___50);
	do_fio(&c__1, path, (ftnlen)3);
	e_wsfe();
	io___51.ciunit = *nounit;
	s_wsfe(&io___51);
	e_wsfe();
	io___52.ciunit = *nounit;
	s_wsfe(&io___52);
	e_wsfe();
	io___53.ciunit = *nounit;
	s_wsfe(&io___53);
	e_wsfe();
	io___54.ciunit = *nounit;
	s_wsfe(&io___54);
	do_fio(&c__1, (char *)&(*thresh), (ftnlen)sizeof(doublereal));
	e_wsfe();
	ntestf = 2;
    }

    for (j = 1; j <= 11; ++j) {
	if (result[j] >= *thresh) {
	    io___55.ciunit = *nounit;
	    s_wsfe(&io___55);
	    do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
	    do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer));
	    do_fio(&c__1, (char *)&j, (ftnlen)sizeof(integer));
	    do_fio(&c__1, (char *)&result[j], (ftnlen)sizeof(doublereal));
	    e_wsfe();
	}
/* L210: */
    }

    nerrs += nfail;
    ntestt += ntest;
    goto L170;
L220:

/*     Summary */

    dlasum_(path, nounit, &nerrs, &ntestt);



    return 0;

/*     End of DDRVVX */

} /* ddrvvx_ */

#undef a_ref