#include "blaswrap.h" /* -- translated by f2c (version 19990503). You must link the resulting object file with the libraries: -lf2c -lm (in that order) */ #include "f2c.h" /* Common Block Declarations */ struct { integer infot, nunit; logical ok, lerr; } infoc_; #define infoc_1 infoc_ struct { char srnamt[6]; } srnamc_; #define srnamc_1 srnamc_ /* Table of constant values */ static doublereal c_b20 = 0.; static integer c__0 = 0; static integer c__6 = 6; static doublereal c_b37 = 1.; static integer c__1 = 1; static integer c__2 = 2; static integer c__4 = 4; /* Subroutine */ int dchkbd_(integer *nsizes, integer *mval, integer *nval, integer *ntypes, logical *dotype, integer *nrhs, integer *iseed, doublereal *thresh, doublereal *a, integer *lda, doublereal *bd, doublereal *be, doublereal *s1, doublereal *s2, doublereal *x, integer *ldx, doublereal *y, doublereal *z__, doublereal *q, integer * ldq, doublereal *pt, integer *ldpt, doublereal *u, doublereal *vt, doublereal *work, integer *lwork, integer *iwork, integer *nout, integer *info) { /* Initialized data */ static integer ktype[16] = { 1,2,4,4,4,4,4,6,6,6,6,6,9,9,9,10 }; static integer kmagn[16] = { 1,1,1,1,1,2,3,1,1,1,2,3,1,2,3,0 }; static integer kmode[16] = { 0,0,4,3,1,4,4,4,3,1,4,4,0,0,0,0 }; /* Format strings */ static char fmt_9998[] = "(\002 DCHKBD: \002,a,\002 returned INFO=\002,i" "6,\002.\002,/9x,\002M=\002,i6,\002, N=\002,i6,\002, JTYPE=\002,i" "6,\002, ISEED=(\002,3(i5,\002,\002),i5,\002)\002)"; static char fmt_9999[] = "(\002 M=\002,i5,\002, N=\002,i5,\002, type " "\002,i2,\002, seed=\002,4(i4,\002,\002),\002 test(\002,i2,\002)" "=\002,g11.4)"; /* System generated locals */ integer a_dim1, a_offset, pt_dim1, pt_offset, q_dim1, q_offset, u_dim1, u_offset, vt_dim1, vt_offset, x_dim1, x_offset, y_dim1, y_offset, z_dim1, z_offset, i__1, i__2, i__3, i__4, i__5, i__6, i__7; doublereal d__1, d__2, d__3, d__4, d__5, d__6, d__7; /* Builtin functions Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen); double log(doublereal), sqrt(doublereal), exp(doublereal); integer s_wsfe(cilist *), do_fio(integer *, char *, ftnlen), e_wsfe(void); /* Local variables */ static doublereal cond; static integer jcol; static char path[3]; static integer idum[1], mmax, nmax; static doublereal unfl, ovfl; static char uplo[1]; static doublereal temp1, temp2; static integer i__, j, m, n; extern /* Subroutine */ int dbdt01_(integer *, integer *, integer *, doublereal *, integer *, doublereal *, integer *, doublereal *, doublereal *, doublereal *, integer *, doublereal *, doublereal *) ; static logical badmm, badnn; extern /* Subroutine */ int dbdt02_(integer *, integer *, doublereal *, integer *, doublereal *, integer *, doublereal *, integer *, doublereal *, doublereal *), dbdt03_(char *, integer *, integer *, doublereal *, doublereal *, doublereal *, integer *, doublereal * , doublereal *, integer *, doublereal *, doublereal *); static integer nfail, imode; extern /* Subroutine */ int dgemm_(char *, char *, integer *, integer *, integer *, doublereal *, doublereal *, integer *, doublereal *, integer *, doublereal *, doublereal *, integer *); static doublereal dumma[1]; static integer iinfo; extern /* Subroutine */ int dort01_(char *, integer *, integer *, doublereal *, integer *, doublereal *, integer *, doublereal *); static doublereal anorm; static integer mnmin; extern /* Subroutine */ int dcopy_(integer *, doublereal *, integer *, doublereal *, integer *); static integer mnmax, jsize, itype, jtype, ntest; extern /* Subroutine */ int dlahd2_(integer *, char *); static integer log2ui; extern /* Subroutine */ int dlabad_(doublereal *, doublereal *); static logical bidiag; extern /* Subroutine */ int dbdsdc_(char *, char *, integer *, doublereal *, doublereal *, doublereal *, integer *, doublereal *, integer *, doublereal *, integer *, doublereal *, integer *, integer *), dgebrd_(integer *, integer *, doublereal *, integer *, doublereal *, doublereal *, doublereal *, doublereal *, doublereal *, integer *, integer *); extern doublereal dlamch_(char *); static integer mq; extern doublereal dlarnd_(integer *, integer *); extern /* Subroutine */ int dlacpy_(char *, integer *, integer *, doublereal *, integer *, doublereal *, integer *), dlaset_(char *, integer *, integer *, doublereal *, doublereal *, doublereal *, integer *); static integer ioldsd[4]; extern /* Subroutine */ int dbdsqr_(char *, integer *, integer *, integer *, integer *, doublereal *, doublereal *, doublereal *, integer *, doublereal *, integer *, doublereal *, integer *, doublereal *, integer *), dorgbr_(char *, integer *, integer *, integer *, doublereal *, integer *, doublereal *, doublereal *, integer *, integer *), xerbla_(char *, integer *), alasum_( char *, integer *, integer *, integer *, integer *), dlatmr_(integer *, integer *, char *, integer *, char *, doublereal *, integer *, doublereal *, doublereal *, char *, char *, doublereal *, integer *, doublereal *, doublereal *, integer *, doublereal *, char *, integer *, integer *, integer *, doublereal *, doublereal *, char *, doublereal *, integer *, integer *, integer *), dlatms_(integer *, integer *, char *, integer *, char *, doublereal *, integer *, doublereal *, doublereal *, integer *, integer *, char *, doublereal *, integer *, doublereal *, integer *); static doublereal amninv; static integer minwrk; static doublereal rtunfl, rtovfl, ulpinv, result[19]; static integer mtypes; static doublereal dum[1], ulp; /* Fortran I/O blocks */ static cilist io___39 = { 0, 0, 0, fmt_9998, 0 }; static cilist io___40 = { 0, 0, 0, fmt_9998, 0 }; static cilist io___42 = { 0, 0, 0, fmt_9998, 0 }; static cilist io___43 = { 0, 0, 0, fmt_9998, 0 }; static cilist io___44 = { 0, 0, 0, fmt_9998, 0 }; static cilist io___45 = { 0, 0, 0, fmt_9998, 0 }; static cilist io___51 = { 0, 0, 0, fmt_9998, 0 }; static cilist io___52 = { 0, 0, 0, fmt_9998, 0 }; static cilist io___53 = { 0, 0, 0, fmt_9999, 0 }; #define a_ref(a_1,a_2) a[(a_2)*a_dim1 + a_1] /* -- LAPACK test routine (version 3.0) -- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., Courant Institute, Argonne National Lab, and Rice University June 30, 1999 Purpose ======= DCHKBD checks the singular value decomposition (SVD) routines. DGEBRD reduces a real general m by n matrix A to upper or lower bidiagonal form B by an orthogonal transformation: Q' * A * P = B (or A = Q * B * P'). The matrix B is upper bidiagonal if m >= n and lower bidiagonal if m < n. DORGBR generates the orthogonal matrices Q and P' from DGEBRD. Note that Q and P are not necessarily square. DBDSQR computes the singular value decomposition of the bidiagonal matrix B as B = U S V'. It is called three times to compute 1) B = U S1 V', where S1 is the diagonal matrix of singular values and the columns of the matrices U and V are the left and right singular vectors, respectively, of B. 2) Same as 1), but the singular values are stored in S2 and the singular vectors are not computed. 3) A = (UQ) S (P'V'), the SVD of the original matrix A. In addition, DBDSQR has an option to apply the left orthogonal matrix U to a matrix X, useful in least squares applications. DBDSDC computes the singular value decomposition of the bidiagonal matrix B as B = U S V' using divide-and-conquer. It is called twice to compute 1) B = U S1 V', where S1 is the diagonal matrix of singular values and the columns of the matrices U and V are the left and right singular vectors, respectively, of B. 2) Same as 1), but the singular values are stored in S2 and the singular vectors are not computed. For each pair of matrix dimensions (M,N) and each selected matrix type, an M by N matrix A and an M by NRHS matrix X are generated. The problem dimensions are as follows A: M x N Q: M x min(M,N) (but M x M if NRHS > 0) P: min(M,N) x N B: min(M,N) x min(M,N) U, V: min(M,N) x min(M,N) S1, S2 diagonal, order min(M,N) X: M x NRHS For each generated matrix, 14 tests are performed: Test DGEBRD and DORGBR (1) | A - Q B PT | / ( |A| max(M,N) ulp ), PT = P' (2) | I - Q' Q | / ( M ulp ) (3) | I - PT PT' | / ( N ulp ) Test DBDSQR on bidiagonal matrix B (4) | B - U S1 VT | / ( |B| min(M,N) ulp ), VT = V' (5) | Y - U Z | / ( |Y| max(min(M,N),k) ulp ), where Y = Q' X and Z = U' Y. (6) | I - U' U | / ( min(M,N) ulp ) (7) | I - VT VT' | / ( min(M,N) ulp ) (8) S1 contains min(M,N) nonnegative values in decreasing order. (Return 0 if true, 1/ULP if false.) (9) | S1 - S2 | / ( |S1| ulp ), where S2 is computed without computing U and V. (10) 0 if the true singular values of B are within THRESH of those in S1. 2*THRESH if they are not. (Tested using DSVDCH) Test DBDSQR on matrix A (11) | A - (QU) S (VT PT) | / ( |A| max(M,N) ulp ) (12) | X - (QU) Z | / ( |X| max(M,k) ulp ) (13) | I - (QU)'(QU) | / ( M ulp ) (14) | I - (VT PT) (PT'VT') | / ( N ulp ) Test DBDSDC on bidiagonal matrix B (15) | B - U S1 VT | / ( |B| min(M,N) ulp ), VT = V' (16) | I - U' U | / ( min(M,N) ulp ) (17) | I - VT VT' | / ( min(M,N) ulp ) (18) S1 contains min(M,N) nonnegative values in decreasing order. (Return 0 if true, 1/ULP if false.) (19) | S1 - S2 | / ( |S1| ulp ), where S2 is computed without computing U and V. The possible matrix types are (1) The zero matrix. (2) The identity matrix. (3) A diagonal matrix with evenly spaced entries 1, ..., ULP and random signs. (ULP = (first number larger than 1) - 1 ) (4) A diagonal matrix with geometrically spaced entries 1, ..., ULP and random signs. (5) A diagonal matrix with "clustered" entries 1, ULP, ..., ULP and random signs. (6) Same as (3), but multiplied by SQRT( overflow threshold ) (7) Same as (3), but multiplied by SQRT( underflow threshold ) (8) A matrix of the form U D V, where U and V are orthogonal and D has evenly spaced entries 1, ..., ULP with random signs on the diagonal. (9) A matrix of the form U D V, where U and V are orthogonal and D has geometrically spaced entries 1, ..., ULP with random signs on the diagonal. (10) A matrix of the form U D V, where U and V are orthogonal and D has "clustered" entries 1, ULP,..., ULP with random signs on the diagonal. (11) Same as (8), but multiplied by SQRT( overflow threshold ) (12) Same as (8), but multiplied by SQRT( underflow threshold ) (13) Rectangular matrix with random entries chosen from (-1,1). (14) Same as (13), but multiplied by SQRT( overflow threshold ) (15) Same as (13), but multiplied by SQRT( underflow threshold ) Special case: (16) A bidiagonal matrix with random entries chosen from a logarithmic distribution on [ulp^2,ulp^(-2)] (I.e., each entry is e^x, where x is chosen uniformly on [ 2 log(ulp), -2 log(ulp) ] .) For *this* type: (a) DGEBRD is not called to reduce it to bidiagonal form. (b) the bidiagonal is min(M,N) x min(M,N); if M= THRESH. To have every test ratio printed, use THRESH = 0. Note that the expected value of the test ratios is O(1), so THRESH should be a reasonably small multiple of 1, e.g., 10 or 100. A (workspace) DOUBLE PRECISION array, dimension (LDA,NMAX) where NMAX is the maximum value of N in NVAL. LDA (input) INTEGER The leading dimension of the array A. LDA >= max(1,MMAX), where MMAX is the maximum value of M in MVAL. BD (workspace) DOUBLE PRECISION array, dimension (max(min(MVAL(j),NVAL(j)))) BE (workspace) DOUBLE PRECISION array, dimension (max(min(MVAL(j),NVAL(j)))) S1 (workspace) DOUBLE PRECISION array, dimension (max(min(MVAL(j),NVAL(j)))) S2 (workspace) DOUBLE PRECISION array, dimension (max(min(MVAL(j),NVAL(j)))) X (workspace) DOUBLE PRECISION array, dimension (LDX,NRHS) LDX (input) INTEGER The leading dimension of the arrays X, Y, and Z. LDX >= max(1,MMAX) Y (workspace) DOUBLE PRECISION array, dimension (LDX,NRHS) Z (workspace) DOUBLE PRECISION array, dimension (LDX,NRHS) Q (workspace) DOUBLE PRECISION array, dimension (LDQ,MMAX) LDQ (input) INTEGER The leading dimension of the array Q. LDQ >= max(1,MMAX). PT (workspace) DOUBLE PRECISION array, dimension (LDPT,NMAX) LDPT (input) INTEGER The leading dimension of the arrays PT, U, and V. LDPT >= max(1, max(min(MVAL(j),NVAL(j)))). U (workspace) DOUBLE PRECISION array, dimension (LDPT,max(min(MVAL(j),NVAL(j)))) V (workspace) DOUBLE PRECISION array, dimension (LDPT,max(min(MVAL(j),NVAL(j)))) WORK (workspace) DOUBLE PRECISION array, dimension (LWORK) LWORK (input) INTEGER The number of entries in WORK. This must be at least 3(M+N) and M(M + max(M,N,k) + 1) + N*min(M,N) for all pairs (M,N)=(MM(j),NN(j)) IWORK (workspace) INTEGER array, dimension at least 8*min(M,N) NOUT (input) INTEGER The FORTRAN unit number for printing out error messages (e.g., if a routine returns IINFO not equal to 0.) INFO (output) INTEGER If 0, then everything ran OK. -1: NSIZES < 0 -2: Some MM(j) < 0 -3: Some NN(j) < 0 -4: NTYPES < 0 -6: NRHS < 0 -8: THRESH < 0 -11: LDA < 1 or LDA < MMAX, where MMAX is max( MM(j) ). -17: LDB < 1 or LDB < MMAX. -21: LDQ < 1 or LDQ < MMAX. -23: LDPT< 1 or LDPT< MNMAX. -27: LWORK too small. If DLATMR, SLATMS, DGEBRD, DORGBR, or DBDSQR, returns an error code, the absolute value of it is returned. ----------------------------------------------------------------------- Some Local Variables and Parameters: ---- ----- --------- --- ---------- ZERO, ONE Real 0 and 1. MAXTYP The number of types defined. NTEST The number of tests performed, or which can be performed so far, for the current matrix. MMAX Largest value in NN. NMAX Largest value in NN. MNMIN min(MM(j), NN(j)) (the dimension of the bidiagonal matrix.) MNMAX The maximum value of MNMIN for j=1,...,NSIZES. NFAIL The number of tests which have exceeded THRESH COND, IMODE Values to be passed to the matrix generators. ANORM Norm of A; passed to matrix generators. OVFL, UNFL Overflow and underflow thresholds. RTOVFL, RTUNFL Square roots of the previous 2 values. ULP, ULPINV Finest relative precision and its inverse. The following four arrays decode JTYPE: KTYPE(j) The general type (1-10) for type "j". KMODE(j) The MODE value to be passed to the matrix generator for type "j". KMAGN(j) The order of magnitude ( O(1), O(overflow^(1/2) ), O(underflow^(1/2) ) ====================================================================== Parameter adjustments */ --mval; --nval; --dotype; --iseed; a_dim1 = *lda; a_offset = 1 + a_dim1 * 1; a -= a_offset; --bd; --be; --s1; --s2; z_dim1 = *ldx; z_offset = 1 + z_dim1 * 1; z__ -= z_offset; y_dim1 = *ldx; y_offset = 1 + y_dim1 * 1; y -= y_offset; x_dim1 = *ldx; x_offset = 1 + x_dim1 * 1; x -= x_offset; q_dim1 = *ldq; q_offset = 1 + q_dim1 * 1; q -= q_offset; vt_dim1 = *ldpt; vt_offset = 1 + vt_dim1 * 1; vt -= vt_offset; u_dim1 = *ldpt; u_offset = 1 + u_dim1 * 1; u -= u_offset; pt_dim1 = *ldpt; pt_offset = 1 + pt_dim1 * 1; pt -= pt_offset; --work; --iwork; /* Function Body Check for errors */ *info = 0; badmm = FALSE_; badnn = FALSE_; mmax = 1; nmax = 1; mnmax = 1; minwrk = 1; i__1 = *nsizes; for (j = 1; j <= i__1; ++j) { /* Computing MAX */ i__2 = mmax, i__3 = mval[j]; mmax = max(i__2,i__3); if (mval[j] < 0) { badmm = TRUE_; } /* Computing MAX */ i__2 = nmax, i__3 = nval[j]; nmax = max(i__2,i__3); if (nval[j] < 0) { badnn = TRUE_; } /* Computing MAX Computing MIN */ i__4 = mval[j], i__5 = nval[j]; i__2 = mnmax, i__3 = min(i__4,i__5); mnmax = max(i__2,i__3); /* Computing MAX Computing MAX */ i__4 = mval[j], i__5 = nval[j], i__4 = max(i__4,i__5); /* Computing MIN */ i__6 = nval[j], i__7 = mval[j]; i__2 = minwrk, i__3 = (mval[j] + nval[j]) * 3, i__2 = max(i__2,i__3), i__3 = mval[j] * (mval[j] + max(i__4,*nrhs) + 1) + nval[j] * min(i__6,i__7); minwrk = max(i__2,i__3); /* L10: */ } /* Check for errors */ if (*nsizes < 0) { *info = -1; } else if (badmm) { *info = -2; } else if (badnn) { *info = -3; } else if (*ntypes < 0) { *info = -4; } else if (*nrhs < 0) { *info = -6; } else if (*lda < mmax) { *info = -11; } else if (*ldx < mmax) { *info = -17; } else if (*ldq < mmax) { *info = -21; } else if (*ldpt < mnmax) { *info = -23; } else if (minwrk > *lwork) { *info = -27; } if (*info != 0) { i__1 = -(*info); xerbla_("DCHKBD", &i__1); return 0; } /* Initialize constants */ s_copy(path, "Double precision", (ftnlen)1, (ftnlen)16); s_copy(path + 1, "BD", (ftnlen)2, (ftnlen)2); nfail = 0; ntest = 0; unfl = dlamch_("Safe minimum"); ovfl = dlamch_("Overflow"); dlabad_(&unfl, &ovfl); ulp = dlamch_("Precision"); ulpinv = 1. / ulp; log2ui = (integer) (log(ulpinv) / log(2.)); rtunfl = sqrt(unfl); rtovfl = sqrt(ovfl); infoc_1.infot = 0; /* Loop over sizes, types */ i__1 = *nsizes; for (jsize = 1; jsize <= i__1; ++jsize) { m = mval[jsize]; n = nval[jsize]; mnmin = min(m,n); /* Computing MAX */ i__2 = max(m,n); amninv = 1. / max(i__2,1); if (*nsizes != 1) { mtypes = min(16,*ntypes); } else { mtypes = min(17,*ntypes); } i__2 = mtypes; for (jtype = 1; jtype <= i__2; ++jtype) { if (! dotype[jtype]) { goto L190; } for (j = 1; j <= 4; ++j) { ioldsd[j - 1] = iseed[j]; /* L20: */ } for (j = 1; j <= 14; ++j) { result[j - 1] = -1.; /* L30: */ } *(unsigned char *)uplo = ' '; /* Compute "A" Control parameters: KMAGN KMODE KTYPE =1 O(1) clustered 1 zero =2 large clustered 2 identity =3 small exponential (none) =4 arithmetic diagonal, (w/ eigenvalues) =5 random symmetric, w/ eigenvalues =6 nonsymmetric, w/ singular values =7 random diagonal =8 random symmetric =9 random nonsymmetric =10 random bidiagonal (log. distrib.) */ if (mtypes > 16) { goto L100; } itype = ktype[jtype - 1]; imode = kmode[jtype - 1]; /* Compute norm */ switch (kmagn[jtype - 1]) { case 1: goto L40; case 2: goto L50; case 3: goto L60; } L40: anorm = 1.; goto L70; L50: anorm = rtovfl * ulp * amninv; goto L70; L60: anorm = rtunfl * max(m,n) * ulpinv; goto L70; L70: dlaset_("Full", lda, &n, &c_b20, &c_b20, &a[a_offset], lda); iinfo = 0; cond = ulpinv; bidiag = FALSE_; if (itype == 1) { /* Zero matrix */ iinfo = 0; } else if (itype == 2) { /* Identity */ i__3 = mnmin; for (jcol = 1; jcol <= i__3; ++jcol) { a_ref(jcol, jcol) = anorm; /* L80: */ } } else if (itype == 4) { /* Diagonal Matrix, [Eigen]values Specified */ dlatms_(&mnmin, &mnmin, "S", &iseed[1], "N", &work[1], &imode, &cond, &anorm, &c__0, &c__0, "N", &a[a_offset], lda, &work[mnmin + 1], &iinfo); } else if (itype == 5) { /* Symmetric, eigenvalues specified */ dlatms_(&mnmin, &mnmin, "S", &iseed[1], "S", &work[1], &imode, &cond, &anorm, &m, &n, "N", &a[a_offset], lda, &work[ mnmin + 1], &iinfo); } else if (itype == 6) { /* Nonsymmetric, singular values specified */ dlatms_(&m, &n, "S", &iseed[1], "N", &work[1], &imode, &cond, &anorm, &m, &n, "N", &a[a_offset], lda, &work[mnmin + 1], &iinfo); } else if (itype == 7) { /* Diagonal, random entries */ dlatmr_(&mnmin, &mnmin, "S", &iseed[1], "N", &work[1], &c__6, &c_b37, &c_b37, "T", "N", &work[mnmin + 1], &c__1, & c_b37, &work[(mnmin << 1) + 1], &c__1, &c_b37, "N", & iwork[1], &c__0, &c__0, &c_b20, &anorm, "NO", &a[ a_offset], lda, &iwork[1], &iinfo); } else if (itype == 8) { /* Symmetric, random entries */ dlatmr_(&mnmin, &mnmin, "S", &iseed[1], "S", &work[1], &c__6, &c_b37, &c_b37, "T", "N", &work[mnmin + 1], &c__1, & c_b37, &work[m + mnmin + 1], &c__1, &c_b37, "N", & iwork[1], &m, &n, &c_b20, &anorm, "NO", &a[a_offset], lda, &iwork[1], &iinfo); } else if (itype == 9) { /* Nonsymmetric, random entries */ dlatmr_(&m, &n, "S", &iseed[1], "N", &work[1], &c__6, &c_b37, &c_b37, "T", "N", &work[mnmin + 1], &c__1, &c_b37, & work[m + mnmin + 1], &c__1, &c_b37, "N", &iwork[1], & m, &n, &c_b20, &anorm, "NO", &a[a_offset], lda, & iwork[1], &iinfo); } else if (itype == 10) { /* Bidiagonal, random entries */ temp1 = log(ulp) * -2.; i__3 = mnmin; for (j = 1; j <= i__3; ++j) { bd[j] = exp(temp1 * dlarnd_(&c__2, &iseed[1])); if (j < mnmin) { be[j] = exp(temp1 * dlarnd_(&c__2, &iseed[1])); } /* L90: */ } iinfo = 0; bidiag = TRUE_; if (m >= n) { *(unsigned char *)uplo = 'U'; } else { *(unsigned char *)uplo = 'L'; } } else { iinfo = 1; } if (iinfo == 0) { /* Generate Right-Hand Side */ if (bidiag) { dlatmr_(&mnmin, nrhs, "S", &iseed[1], "N", &work[1], & c__6, &c_b37, &c_b37, "T", "N", &work[mnmin + 1], &c__1, &c_b37, &work[(mnmin << 1) + 1], &c__1, & c_b37, "N", &iwork[1], &mnmin, nrhs, &c_b20, & c_b37, "NO", &y[y_offset], ldx, &iwork[1], &iinfo); } else { dlatmr_(&m, nrhs, "S", &iseed[1], "N", &work[1], &c__6, & c_b37, &c_b37, "T", "N", &work[m + 1], &c__1, & c_b37, &work[(m << 1) + 1], &c__1, &c_b37, "N", & iwork[1], &m, nrhs, &c_b20, &c_b37, "NO", &x[ x_offset], ldx, &iwork[1], &iinfo); } } /* Error Exit */ if (iinfo != 0) { io___39.ciunit = *nout; s_wsfe(&io___39); do_fio(&c__1, "Generator", (ftnlen)9); do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&m, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer)); do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer)); e_wsfe(); *info = abs(iinfo); return 0; } L100: /* Call DGEBRD and DORGBR to compute B, Q, and P, do tests. */ if (! bidiag) { /* Compute transformations to reduce A to bidiagonal form: B := Q' * A * P. */ dlacpy_(" ", &m, &n, &a[a_offset], lda, &q[q_offset], ldq); i__3 = *lwork - (mnmin << 1); dgebrd_(&m, &n, &q[q_offset], ldq, &bd[1], &be[1], &work[1], & work[mnmin + 1], &work[(mnmin << 1) + 1], &i__3, & iinfo); /* Check error code from DGEBRD. */ if (iinfo != 0) { io___40.ciunit = *nout; s_wsfe(&io___40); do_fio(&c__1, "DGEBRD", (ftnlen)6); do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&m, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer)); do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer)) ; e_wsfe(); *info = abs(iinfo); return 0; } dlacpy_(" ", &m, &n, &q[q_offset], ldq, &pt[pt_offset], ldpt); if (m >= n) { *(unsigned char *)uplo = 'U'; } else { *(unsigned char *)uplo = 'L'; } /* Generate Q */ mq = m; if (*nrhs <= 0) { mq = mnmin; } i__3 = *lwork - (mnmin << 1); dorgbr_("Q", &m, &mq, &n, &q[q_offset], ldq, &work[1], &work[( mnmin << 1) + 1], &i__3, &iinfo); /* Check error code from DORGBR. */ if (iinfo != 0) { io___42.ciunit = *nout; s_wsfe(&io___42); do_fio(&c__1, "DORGBR(Q)", (ftnlen)9); do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&m, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer)); do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer)) ; e_wsfe(); *info = abs(iinfo); return 0; } /* Generate P' */ i__3 = *lwork - (mnmin << 1); dorgbr_("P", &mnmin, &n, &m, &pt[pt_offset], ldpt, &work[ mnmin + 1], &work[(mnmin << 1) + 1], &i__3, &iinfo); /* Check error code from DORGBR. */ if (iinfo != 0) { io___43.ciunit = *nout; s_wsfe(&io___43); do_fio(&c__1, "DORGBR(P)", (ftnlen)9); do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&m, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer)); do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer)) ; e_wsfe(); *info = abs(iinfo); return 0; } /* Apply Q' to an M by NRHS matrix X: Y := Q' * X. */ dgemm_("Transpose", "No transpose", &m, nrhs, &m, &c_b37, &q[ q_offset], ldq, &x[x_offset], ldx, &c_b20, &y[ y_offset], ldx); /* Test 1: Check the decomposition A := Q * B * PT 2: Check the orthogonality of Q 3: Check the orthogonality of PT */ dbdt01_(&m, &n, &c__1, &a[a_offset], lda, &q[q_offset], ldq, & bd[1], &be[1], &pt[pt_offset], ldpt, &work[1], result) ; dort01_("Columns", &m, &mq, &q[q_offset], ldq, &work[1], lwork, &result[1]); dort01_("Rows", &mnmin, &n, &pt[pt_offset], ldpt, &work[1], lwork, &result[2]); } /* Use DBDSQR to form the SVD of the bidiagonal matrix B: B := U * S1 * VT, and compute Z = U' * Y. */ dcopy_(&mnmin, &bd[1], &c__1, &s1[1], &c__1); if (mnmin > 0) { i__3 = mnmin - 1; dcopy_(&i__3, &be[1], &c__1, &work[1], &c__1); } dlacpy_(" ", &m, nrhs, &y[y_offset], ldx, &z__[z_offset], ldx); dlaset_("Full", &mnmin, &mnmin, &c_b20, &c_b37, &u[u_offset], ldpt); dlaset_("Full", &mnmin, &mnmin, &c_b20, &c_b37, &vt[vt_offset], ldpt); dbdsqr_(uplo, &mnmin, &mnmin, &mnmin, nrhs, &s1[1], &work[1], &vt[ vt_offset], ldpt, &u[u_offset], ldpt, &z__[z_offset], ldx, &work[mnmin + 1], &iinfo); /* Check error code from DBDSQR. */ if (iinfo != 0) { io___44.ciunit = *nout; s_wsfe(&io___44); do_fio(&c__1, "DBDSQR(vects)", (ftnlen)13); do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&m, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer)); do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer)); e_wsfe(); *info = abs(iinfo); if (iinfo < 0) { return 0; } else { result[3] = ulpinv; goto L170; } } /* Use DBDSQR to compute only the singular values of the bidiagonal matrix B; U, VT, and Z should not be modified. */ dcopy_(&mnmin, &bd[1], &c__1, &s2[1], &c__1); if (mnmin > 0) { i__3 = mnmin - 1; dcopy_(&i__3, &be[1], &c__1, &work[1], &c__1); } dbdsqr_(uplo, &mnmin, &c__0, &c__0, &c__0, &s2[1], &work[1], &vt[ vt_offset], ldpt, &u[u_offset], ldpt, &z__[z_offset], ldx, &work[mnmin + 1], &iinfo); /* Check error code from DBDSQR. */ if (iinfo != 0) { io___45.ciunit = *nout; s_wsfe(&io___45); do_fio(&c__1, "DBDSQR(values)", (ftnlen)14); do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&m, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer)); do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer)); e_wsfe(); *info = abs(iinfo); if (iinfo < 0) { return 0; } else { result[8] = ulpinv; goto L170; } } /* Test 4: Check the decomposition B := U * S1 * VT 5: Check the computation Z := U' * Y 6: Check the orthogonality of U 7: Check the orthogonality of VT */ dbdt03_(uplo, &mnmin, &c__1, &bd[1], &be[1], &u[u_offset], ldpt, & s1[1], &vt[vt_offset], ldpt, &work[1], &result[3]); dbdt02_(&mnmin, nrhs, &y[y_offset], ldx, &z__[z_offset], ldx, &u[ u_offset], ldpt, &work[1], &result[4]); dort01_("Columns", &mnmin, &mnmin, &u[u_offset], ldpt, &work[1], lwork, &result[5]); dort01_("Rows", &mnmin, &mnmin, &vt[vt_offset], ldpt, &work[1], lwork, &result[6]); /* Test 8: Check that the singular values are sorted in non-increasing order and are non-negative */ result[7] = 0.; i__3 = mnmin - 1; for (i__ = 1; i__ <= i__3; ++i__) { if (s1[i__] < s1[i__ + 1]) { result[7] = ulpinv; } if (s1[i__] < 0.) { result[7] = ulpinv; } /* L110: */ } if (mnmin >= 1) { if (s1[mnmin] < 0.) { result[7] = ulpinv; } } /* Test 9: Compare DBDSQR with and without singular vectors */ temp2 = 0.; i__3 = mnmin; for (j = 1; j <= i__3; ++j) { /* Computing MAX Computing MAX */ d__6 = (d__1 = s1[j], abs(d__1)), d__7 = (d__2 = s2[j], abs( d__2)); d__4 = sqrt(unfl) * max(s1[1],1.), d__5 = ulp * max(d__6,d__7) ; temp1 = (d__3 = s1[j] - s2[j], abs(d__3)) / max(d__4,d__5); temp2 = max(temp1,temp2); /* L120: */ } result[8] = temp2; /* Test 10: Sturm sequence test of singular values Go up by factors of two until it succeeds */ temp1 = *thresh * (.5 - ulp); i__3 = log2ui; for (j = 0; j <= i__3; ++j) { /* CALL DSVDCH( MNMIN, BD, BE, S1, TEMP1, IINFO ) */ if (iinfo == 0) { goto L140; } temp1 *= 2.; /* L130: */ } L140: result[9] = temp1; /* Use DBDSQR to form the decomposition A := (QU) S (VT PT) from the bidiagonal form A := Q B PT. */ if (! bidiag) { dcopy_(&mnmin, &bd[1], &c__1, &s2[1], &c__1); if (mnmin > 0) { i__3 = mnmin - 1; dcopy_(&i__3, &be[1], &c__1, &work[1], &c__1); } dbdsqr_(uplo, &mnmin, &n, &m, nrhs, &s2[1], &work[1], &pt[ pt_offset], ldpt, &q[q_offset], ldq, &y[y_offset], ldx, &work[mnmin + 1], &iinfo); /* Test 11: Check the decomposition A := Q*U * S2 * VT*PT 12: Check the computation Z := U' * Q' * X 13: Check the orthogonality of Q*U 14: Check the orthogonality of VT*PT */ dbdt01_(&m, &n, &c__0, &a[a_offset], lda, &q[q_offset], ldq, & s2[1], dumma, &pt[pt_offset], ldpt, &work[1], &result[ 10]); dbdt02_(&m, nrhs, &x[x_offset], ldx, &y[y_offset], ldx, &q[ q_offset], ldq, &work[1], &result[11]); dort01_("Columns", &m, &mq, &q[q_offset], ldq, &work[1], lwork, &result[12]); dort01_("Rows", &mnmin, &n, &pt[pt_offset], ldpt, &work[1], lwork, &result[13]); } /* Use DBDSDC to form the SVD of the bidiagonal matrix B: B := U * S1 * VT */ dcopy_(&mnmin, &bd[1], &c__1, &s1[1], &c__1); if (mnmin > 0) { i__3 = mnmin - 1; dcopy_(&i__3, &be[1], &c__1, &work[1], &c__1); } dlaset_("Full", &mnmin, &mnmin, &c_b20, &c_b37, &u[u_offset], ldpt); dlaset_("Full", &mnmin, &mnmin, &c_b20, &c_b37, &vt[vt_offset], ldpt); dbdsdc_(uplo, "I", &mnmin, &s1[1], &work[1], &u[u_offset], ldpt, & vt[vt_offset], ldpt, dum, idum, &work[mnmin + 1], &iwork[ 1], &iinfo); /* Check error code from DBDSDC. */ if (iinfo != 0) { io___51.ciunit = *nout; s_wsfe(&io___51); do_fio(&c__1, "DBDSDC(vects)", (ftnlen)13); do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&m, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer)); do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer)); e_wsfe(); *info = abs(iinfo); if (iinfo < 0) { return 0; } else { result[14] = ulpinv; goto L170; } } /* Use DBDSDC to compute only the singular values of the bidiagonal matrix B; U and VT should not be modified. */ dcopy_(&mnmin, &bd[1], &c__1, &s2[1], &c__1); if (mnmin > 0) { i__3 = mnmin - 1; dcopy_(&i__3, &be[1], &c__1, &work[1], &c__1); } dbdsdc_(uplo, "N", &mnmin, &s2[1], &work[1], dum, &c__1, dum, & c__1, dum, idum, &work[mnmin + 1], &iwork[1], &iinfo); /* Check error code from DBDSDC. */ if (iinfo != 0) { io___52.ciunit = *nout; s_wsfe(&io___52); do_fio(&c__1, "DBDSDC(values)", (ftnlen)14); do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&m, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer)); do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer)); e_wsfe(); *info = abs(iinfo); if (iinfo < 0) { return 0; } else { result[17] = ulpinv; goto L170; } } /* Test 15: Check the decomposition B := U * S1 * VT 16: Check the orthogonality of U 17: Check the orthogonality of VT */ dbdt03_(uplo, &mnmin, &c__1, &bd[1], &be[1], &u[u_offset], ldpt, & s1[1], &vt[vt_offset], ldpt, &work[1], &result[14]); dort01_("Columns", &mnmin, &mnmin, &u[u_offset], ldpt, &work[1], lwork, &result[15]); dort01_("Rows", &mnmin, &mnmin, &vt[vt_offset], ldpt, &work[1], lwork, &result[16]); /* Test 18: Check that the singular values are sorted in non-increasing order and are non-negative */ result[17] = 0.; i__3 = mnmin - 1; for (i__ = 1; i__ <= i__3; ++i__) { if (s1[i__] < s1[i__ + 1]) { result[17] = ulpinv; } if (s1[i__] < 0.) { result[17] = ulpinv; } /* L150: */ } if (mnmin >= 1) { if (s1[mnmin] < 0.) { result[17] = ulpinv; } } /* Test 19: Compare DBDSQR with and without singular vectors */ temp2 = 0.; i__3 = mnmin; for (j = 1; j <= i__3; ++j) { /* Computing MAX Computing MAX */ d__4 = abs(s1[1]), d__5 = abs(s2[1]); d__2 = sqrt(unfl) * max(s1[1],1.), d__3 = ulp * max(d__4,d__5) ; temp1 = (d__1 = s1[j] - s2[j], abs(d__1)) / max(d__2,d__3); temp2 = max(temp1,temp2); /* L160: */ } result[18] = temp2; /* End of Loop -- Check for RESULT(j) > THRESH */ L170: for (j = 1; j <= 19; ++j) { if (result[j - 1] >= *thresh) { if (nfail == 0) { dlahd2_(nout, path); } io___53.ciunit = *nout; s_wsfe(&io___53); do_fio(&c__1, (char *)&m, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer)); do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer)) ; do_fio(&c__1, (char *)&j, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&result[j - 1], (ftnlen)sizeof( doublereal)); e_wsfe(); ++nfail; } /* L180: */ } if (! bidiag) { ntest += 19; } else { ntest += 5; } L190: ; } /* L200: */ } /* Summary */ alasum_(path, nout, &nfail, &ntest, &c__0); return 0; /* End of DCHKBD */ } /* dchkbd_ */ #undef a_ref