#include "blaswrap.h" #include "f2c.h" /* Subroutine */ int zhetri_(char *uplo, integer *n, doublecomplex *a, integer *lda, integer *ipiv, doublecomplex *work, integer *info) { /* -- LAPACK routine (version 3.0) -- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., Courant Institute, Argonne National Lab, and Rice University September 30, 1994 Purpose ======= ZHETRI computes the inverse of a complex Hermitian indefinite matrix A using the factorization A = U*D*U**H or A = L*D*L**H computed by ZHETRF. Arguments ========= UPLO (input) CHARACTER*1 Specifies whether the details of the factorization are stored as an upper or lower triangular matrix. = 'U': Upper triangular, form is A = U*D*U**H; = 'L': Lower triangular, form is A = L*D*L**H. N (input) INTEGER The order of the matrix A. N >= 0. A (input/output) COMPLEX*16 array, dimension (LDA,N) On entry, the block diagonal matrix D and the multipliers used to obtain the factor U or L as computed by ZHETRF. On exit, if INFO = 0, the (Hermitian) inverse of the original matrix. If UPLO = 'U', the upper triangular part of the inverse is formed and the part of A below the diagonal is not referenced; if UPLO = 'L' the lower triangular part of the inverse is formed and the part of A above the diagonal is not referenced. LDA (input) INTEGER The leading dimension of the array A. LDA >= max(1,N). IPIV (input) INTEGER array, dimension (N) Details of the interchanges and the block structure of D as determined by ZHETRF. WORK (workspace) COMPLEX*16 array, dimension (N) INFO (output) INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value > 0: if INFO = i, D(i,i) = 0; the matrix is singular and its inverse could not be computed. ===================================================================== Test the input parameters. Parameter adjustments */ /* Table of constant values */ static doublecomplex c_b2 = {0.,0.}; static integer c__1 = 1; /* System generated locals */ integer a_dim1, a_offset, i__1, i__2, i__3; doublereal d__1; doublecomplex z__1, z__2; /* Builtin functions */ double z_abs(doublecomplex *); void d_cnjg(doublecomplex *, doublecomplex *); /* Local variables */ static doublecomplex temp, akkp1; static doublereal d__; static integer j, k; static doublereal t; extern logical lsame_(char *, char *); extern /* Double Complex */ VOID zdotc_(doublecomplex *, integer *, doublecomplex *, integer *, doublecomplex *, integer *); static integer kstep; extern /* Subroutine */ int zhemv_(char *, integer *, doublecomplex *, doublecomplex *, integer *, doublecomplex *, integer *, doublecomplex *, doublecomplex *, integer *); static logical upper; extern /* Subroutine */ int zcopy_(integer *, doublecomplex *, integer *, doublecomplex *, integer *), zswap_(integer *, doublecomplex *, integer *, doublecomplex *, integer *); static doublereal ak; static integer kp; extern /* Subroutine */ int xerbla_(char *, integer *); static doublereal akp1; #define a_subscr(a_1,a_2) (a_2)*a_dim1 + a_1 #define a_ref(a_1,a_2) a[a_subscr(a_1,a_2)] a_dim1 = *lda; a_offset = 1 + a_dim1 * 1; a -= a_offset; --ipiv; --work; /* Function Body */ *info = 0; upper = lsame_(uplo, "U"); if (! upper && ! lsame_(uplo, "L")) { *info = -1; } else if (*n < 0) { *info = -2; } else if (*lda < max(1,*n)) { *info = -4; } if (*info != 0) { i__1 = -(*info); xerbla_("ZHETRI", &i__1); return 0; } /* Quick return if possible */ if (*n == 0) { return 0; } /* Check that the diagonal matrix D is nonsingular. */ if (upper) { /* Upper triangular storage: examine D from bottom to top */ for (*info = *n; *info >= 1; --(*info)) { i__1 = a_subscr(*info, *info); if (ipiv[*info] > 0 && (a[i__1].r == 0. && a[i__1].i == 0.)) { return 0; } /* L10: */ } } else { /* Lower triangular storage: examine D from top to bottom. */ i__1 = *n; for (*info = 1; *info <= i__1; ++(*info)) { i__2 = a_subscr(*info, *info); if (ipiv[*info] > 0 && (a[i__2].r == 0. && a[i__2].i == 0.)) { return 0; } /* L20: */ } } *info = 0; if (upper) { /* Compute inv(A) from the factorization A = U*D*U'. K is the main loop index, increasing from 1 to N in steps of 1 or 2, depending on the size of the diagonal blocks. */ k = 1; L30: /* If K > N, exit from loop. */ if (k > *n) { goto L50; } if (ipiv[k] > 0) { /* 1 x 1 diagonal block Invert the diagonal block. */ i__1 = a_subscr(k, k); i__2 = a_subscr(k, k); d__1 = 1. / a[i__2].r; a[i__1].r = d__1, a[i__1].i = 0.; /* Compute column K of the inverse. */ if (k > 1) { i__1 = k - 1; zcopy_(&i__1, &a_ref(1, k), &c__1, &work[1], &c__1); i__1 = k - 1; z__1.r = -1., z__1.i = 0.; zhemv_(uplo, &i__1, &z__1, &a[a_offset], lda, &work[1], &c__1, &c_b2, &a_ref(1, k), &c__1); i__1 = a_subscr(k, k); i__2 = a_subscr(k, k); i__3 = k - 1; zdotc_(&z__2, &i__3, &work[1], &c__1, &a_ref(1, k), &c__1); d__1 = z__2.r; z__1.r = a[i__2].r - d__1, z__1.i = a[i__2].i; a[i__1].r = z__1.r, a[i__1].i = z__1.i; } kstep = 1; } else { /* 2 x 2 diagonal block Invert the diagonal block. */ t = z_abs(&a_ref(k, k + 1)); i__1 = a_subscr(k, k); ak = a[i__1].r / t; i__1 = a_subscr(k + 1, k + 1); akp1 = a[i__1].r / t; i__1 = a_subscr(k, k + 1); z__1.r = a[i__1].r / t, z__1.i = a[i__1].i / t; akkp1.r = z__1.r, akkp1.i = z__1.i; d__ = t * (ak * akp1 - 1.); i__1 = a_subscr(k, k); d__1 = akp1 / d__; a[i__1].r = d__1, a[i__1].i = 0.; i__1 = a_subscr(k + 1, k + 1); d__1 = ak / d__; a[i__1].r = d__1, a[i__1].i = 0.; i__1 = a_subscr(k, k + 1); z__2.r = -akkp1.r, z__2.i = -akkp1.i; z__1.r = z__2.r / d__, z__1.i = z__2.i / d__; a[i__1].r = z__1.r, a[i__1].i = z__1.i; /* Compute columns K and K+1 of the inverse. */ if (k > 1) { i__1 = k - 1; zcopy_(&i__1, &a_ref(1, k), &c__1, &work[1], &c__1); i__1 = k - 1; z__1.r = -1., z__1.i = 0.; zhemv_(uplo, &i__1, &z__1, &a[a_offset], lda, &work[1], &c__1, &c_b2, &a_ref(1, k), &c__1); i__1 = a_subscr(k, k); i__2 = a_subscr(k, k); i__3 = k - 1; zdotc_(&z__2, &i__3, &work[1], &c__1, &a_ref(1, k), &c__1); d__1 = z__2.r; z__1.r = a[i__2].r - d__1, z__1.i = a[i__2].i; a[i__1].r = z__1.r, a[i__1].i = z__1.i; i__1 = a_subscr(k, k + 1); i__2 = a_subscr(k, k + 1); i__3 = k - 1; zdotc_(&z__2, &i__3, &a_ref(1, k), &c__1, &a_ref(1, k + 1), & c__1); z__1.r = a[i__2].r - z__2.r, z__1.i = a[i__2].i - z__2.i; a[i__1].r = z__1.r, a[i__1].i = z__1.i; i__1 = k - 1; zcopy_(&i__1, &a_ref(1, k + 1), &c__1, &work[1], &c__1); i__1 = k - 1; z__1.r = -1., z__1.i = 0.; zhemv_(uplo, &i__1, &z__1, &a[a_offset], lda, &work[1], &c__1, &c_b2, &a_ref(1, k + 1), &c__1); i__1 = a_subscr(k + 1, k + 1); i__2 = a_subscr(k + 1, k + 1); i__3 = k - 1; zdotc_(&z__2, &i__3, &work[1], &c__1, &a_ref(1, k + 1), &c__1) ; d__1 = z__2.r; z__1.r = a[i__2].r - d__1, z__1.i = a[i__2].i; a[i__1].r = z__1.r, a[i__1].i = z__1.i; } kstep = 2; } kp = (i__1 = ipiv[k], abs(i__1)); if (kp != k) { /* Interchange rows and columns K and KP in the leading submatrix A(1:k+1,1:k+1) */ i__1 = kp - 1; zswap_(&i__1, &a_ref(1, k), &c__1, &a_ref(1, kp), &c__1); i__1 = k - 1; for (j = kp + 1; j <= i__1; ++j) { d_cnjg(&z__1, &a_ref(j, k)); temp.r = z__1.r, temp.i = z__1.i; i__2 = a_subscr(j, k); d_cnjg(&z__1, &a_ref(kp, j)); a[i__2].r = z__1.r, a[i__2].i = z__1.i; i__2 = a_subscr(kp, j); a[i__2].r = temp.r, a[i__2].i = temp.i; /* L40: */ } i__1 = a_subscr(kp, k); d_cnjg(&z__1, &a_ref(kp, k)); a[i__1].r = z__1.r, a[i__1].i = z__1.i; i__1 = a_subscr(k, k); temp.r = a[i__1].r, temp.i = a[i__1].i; i__1 = a_subscr(k, k); i__2 = a_subscr(kp, kp); a[i__1].r = a[i__2].r, a[i__1].i = a[i__2].i; i__1 = a_subscr(kp, kp); a[i__1].r = temp.r, a[i__1].i = temp.i; if (kstep == 2) { i__1 = a_subscr(k, k + 1); temp.r = a[i__1].r, temp.i = a[i__1].i; i__1 = a_subscr(k, k + 1); i__2 = a_subscr(kp, k + 1); a[i__1].r = a[i__2].r, a[i__1].i = a[i__2].i; i__1 = a_subscr(kp, k + 1); a[i__1].r = temp.r, a[i__1].i = temp.i; } } k += kstep; goto L30; L50: ; } else { /* Compute inv(A) from the factorization A = L*D*L'. K is the main loop index, increasing from 1 to N in steps of 1 or 2, depending on the size of the diagonal blocks. */ k = *n; L60: /* If K < 1, exit from loop. */ if (k < 1) { goto L80; } if (ipiv[k] > 0) { /* 1 x 1 diagonal block Invert the diagonal block. */ i__1 = a_subscr(k, k); i__2 = a_subscr(k, k); d__1 = 1. / a[i__2].r; a[i__1].r = d__1, a[i__1].i = 0.; /* Compute column K of the inverse. */ if (k < *n) { i__1 = *n - k; zcopy_(&i__1, &a_ref(k + 1, k), &c__1, &work[1], &c__1); i__1 = *n - k; z__1.r = -1., z__1.i = 0.; zhemv_(uplo, &i__1, &z__1, &a_ref(k + 1, k + 1), lda, &work[1] , &c__1, &c_b2, &a_ref(k + 1, k), &c__1); i__1 = a_subscr(k, k); i__2 = a_subscr(k, k); i__3 = *n - k; zdotc_(&z__2, &i__3, &work[1], &c__1, &a_ref(k + 1, k), &c__1) ; d__1 = z__2.r; z__1.r = a[i__2].r - d__1, z__1.i = a[i__2].i; a[i__1].r = z__1.r, a[i__1].i = z__1.i; } kstep = 1; } else { /* 2 x 2 diagonal block Invert the diagonal block. */ t = z_abs(&a_ref(k, k - 1)); i__1 = a_subscr(k - 1, k - 1); ak = a[i__1].r / t; i__1 = a_subscr(k, k); akp1 = a[i__1].r / t; i__1 = a_subscr(k, k - 1); z__1.r = a[i__1].r / t, z__1.i = a[i__1].i / t; akkp1.r = z__1.r, akkp1.i = z__1.i; d__ = t * (ak * akp1 - 1.); i__1 = a_subscr(k - 1, k - 1); d__1 = akp1 / d__; a[i__1].r = d__1, a[i__1].i = 0.; i__1 = a_subscr(k, k); d__1 = ak / d__; a[i__1].r = d__1, a[i__1].i = 0.; i__1 = a_subscr(k, k - 1); z__2.r = -akkp1.r, z__2.i = -akkp1.i; z__1.r = z__2.r / d__, z__1.i = z__2.i / d__; a[i__1].r = z__1.r, a[i__1].i = z__1.i; /* Compute columns K-1 and K of the inverse. */ if (k < *n) { i__1 = *n - k; zcopy_(&i__1, &a_ref(k + 1, k), &c__1, &work[1], &c__1); i__1 = *n - k; z__1.r = -1., z__1.i = 0.; zhemv_(uplo, &i__1, &z__1, &a_ref(k + 1, k + 1), lda, &work[1] , &c__1, &c_b2, &a_ref(k + 1, k), &c__1); i__1 = a_subscr(k, k); i__2 = a_subscr(k, k); i__3 = *n - k; zdotc_(&z__2, &i__3, &work[1], &c__1, &a_ref(k + 1, k), &c__1) ; d__1 = z__2.r; z__1.r = a[i__2].r - d__1, z__1.i = a[i__2].i; a[i__1].r = z__1.r, a[i__1].i = z__1.i; i__1 = a_subscr(k, k - 1); i__2 = a_subscr(k, k - 1); i__3 = *n - k; zdotc_(&z__2, &i__3, &a_ref(k + 1, k), &c__1, &a_ref(k + 1, k - 1), &c__1); z__1.r = a[i__2].r - z__2.r, z__1.i = a[i__2].i - z__2.i; a[i__1].r = z__1.r, a[i__1].i = z__1.i; i__1 = *n - k; zcopy_(&i__1, &a_ref(k + 1, k - 1), &c__1, &work[1], &c__1); i__1 = *n - k; z__1.r = -1., z__1.i = 0.; zhemv_(uplo, &i__1, &z__1, &a_ref(k + 1, k + 1), lda, &work[1] , &c__1, &c_b2, &a_ref(k + 1, k - 1), &c__1); i__1 = a_subscr(k - 1, k - 1); i__2 = a_subscr(k - 1, k - 1); i__3 = *n - k; zdotc_(&z__2, &i__3, &work[1], &c__1, &a_ref(k + 1, k - 1), & c__1); d__1 = z__2.r; z__1.r = a[i__2].r - d__1, z__1.i = a[i__2].i; a[i__1].r = z__1.r, a[i__1].i = z__1.i; } kstep = 2; } kp = (i__1 = ipiv[k], abs(i__1)); if (kp != k) { /* Interchange rows and columns K and KP in the trailing submatrix A(k-1:n,k-1:n) */ if (kp < *n) { i__1 = *n - kp; zswap_(&i__1, &a_ref(kp + 1, k), &c__1, &a_ref(kp + 1, kp), & c__1); } i__1 = kp - 1; for (j = k + 1; j <= i__1; ++j) { d_cnjg(&z__1, &a_ref(j, k)); temp.r = z__1.r, temp.i = z__1.i; i__2 = a_subscr(j, k); d_cnjg(&z__1, &a_ref(kp, j)); a[i__2].r = z__1.r, a[i__2].i = z__1.i; i__2 = a_subscr(kp, j); a[i__2].r = temp.r, a[i__2].i = temp.i; /* L70: */ } i__1 = a_subscr(kp, k); d_cnjg(&z__1, &a_ref(kp, k)); a[i__1].r = z__1.r, a[i__1].i = z__1.i; i__1 = a_subscr(k, k); temp.r = a[i__1].r, temp.i = a[i__1].i; i__1 = a_subscr(k, k); i__2 = a_subscr(kp, kp); a[i__1].r = a[i__2].r, a[i__1].i = a[i__2].i; i__1 = a_subscr(kp, kp); a[i__1].r = temp.r, a[i__1].i = temp.i; if (kstep == 2) { i__1 = a_subscr(k, k - 1); temp.r = a[i__1].r, temp.i = a[i__1].i; i__1 = a_subscr(k, k - 1); i__2 = a_subscr(kp, k - 1); a[i__1].r = a[i__2].r, a[i__1].i = a[i__2].i; i__1 = a_subscr(kp, k - 1); a[i__1].r = temp.r, a[i__1].i = temp.i; } } k -= kstep; goto L60; L80: ; } return 0; /* End of ZHETRI */ } /* zhetri_ */ #undef a_ref #undef a_subscr