#include "blaswrap.h"
#include "f2c.h"

/* Subroutine */ int cppcon_(char *uplo, integer *n, complex *ap, real *anorm,
	 real *rcond, complex *work, real *rwork, integer *info)
{
/*  -- LAPACK routine (version 3.0) --   
       Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,   
       Courant Institute, Argonne National Lab, and Rice University   
       March 31, 1993   


    Purpose   
    =======   

    CPPCON estimates the reciprocal of the condition number (in the   
    1-norm) of a complex Hermitian positive definite packed matrix using   
    the Cholesky factorization A = U**H*U or A = L*L**H computed by   
    CPPTRF.   

    An estimate is obtained for norm(inv(A)), and the reciprocal of the   
    condition number is computed as RCOND = 1 / (ANORM * norm(inv(A))).   

    Arguments   
    =========   

    UPLO    (input) CHARACTER*1   
            = 'U':  Upper triangle of A is stored;   
            = 'L':  Lower triangle of A is stored.   

    N       (input) INTEGER   
            The order of the matrix A.  N >= 0.   

    AP      (input) COMPLEX array, dimension (N*(N+1)/2)   
            The triangular factor U or L from the Cholesky factorization   
            A = U**H*U or A = L*L**H, packed columnwise in a linear   
            array.  The j-th column of U or L is stored in the array AP   
            as follows:   
            if UPLO = 'U', AP(i + (j-1)*j/2) = U(i,j) for 1<=i<=j;   
            if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = L(i,j) for j<=i<=n.   

    ANORM   (input) REAL   
            The 1-norm (or infinity-norm) of the Hermitian matrix A.   

    RCOND   (output) REAL   
            The reciprocal of the condition number of the matrix A,   
            computed as RCOND = 1/(ANORM * AINVNM), where AINVNM is an   
            estimate of the 1-norm of inv(A) computed in this routine.   

    WORK    (workspace) COMPLEX array, dimension (2*N)   

    RWORK   (workspace) REAL array, dimension (N)   

    INFO    (output) INTEGER   
            = 0:  successful exit   
            < 0:  if INFO = -i, the i-th argument had an illegal value   

    =====================================================================   


       Test the input parameters.   

       Parameter adjustments */
    /* Table of constant values */
    static integer c__1 = 1;
    
    /* System generated locals */
    integer i__1;
    real r__1, r__2;
    /* Builtin functions */
    double r_imag(complex *);
    /* Local variables */
    static integer kase;
    static real scale;
    extern logical lsame_(char *, char *);
    static logical upper;
    extern /* Subroutine */ int clacon_(integer *, complex *, complex *, real 
	    *, integer *);
    static integer ix;
    extern integer icamax_(integer *, complex *, integer *);
    static real scalel;
    extern doublereal slamch_(char *);
    static real scaleu;
    extern /* Subroutine */ int xerbla_(char *, integer *), clatps_(
	    char *, char *, char *, char *, integer *, complex *, complex *, 
	    real *, real *, integer *);
    static real ainvnm;
    extern /* Subroutine */ int csrscl_(integer *, real *, complex *, integer 
	    *);
    static char normin[1];
    static real smlnum;


    --rwork;
    --work;
    --ap;

    /* Function Body */
    *info = 0;
    upper = lsame_(uplo, "U");
    if (! upper && ! lsame_(uplo, "L")) {
	*info = -1;
    } else if (*n < 0) {
	*info = -2;
    } else if (*anorm < 0.f) {
	*info = -4;
    }
    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("CPPCON", &i__1);
	return 0;
    }

/*     Quick return if possible */

    *rcond = 0.f;
    if (*n == 0) {
	*rcond = 1.f;
	return 0;
    } else if (*anorm == 0.f) {
	return 0;
    }

    smlnum = slamch_("Safe minimum");

/*     Estimate the 1-norm of the inverse. */

    kase = 0;
    *(unsigned char *)normin = 'N';
L10:
    clacon_(n, &work[*n + 1], &work[1], &ainvnm, &kase);
    if (kase != 0) {
	if (upper) {

/*           Multiply by inv(U'). */

	    clatps_("Upper", "Conjugate transpose", "Non-unit", normin, n, &
		    ap[1], &work[1], &scalel, &rwork[1], info);
	    *(unsigned char *)normin = 'Y';

/*           Multiply by inv(U). */

	    clatps_("Upper", "No transpose", "Non-unit", normin, n, &ap[1], &
		    work[1], &scaleu, &rwork[1], info);
	} else {

/*           Multiply by inv(L). */

	    clatps_("Lower", "No transpose", "Non-unit", normin, n, &ap[1], &
		    work[1], &scalel, &rwork[1], info);
	    *(unsigned char *)normin = 'Y';

/*           Multiply by inv(L'). */

	    clatps_("Lower", "Conjugate transpose", "Non-unit", normin, n, &
		    ap[1], &work[1], &scaleu, &rwork[1], info);
	}

/*        Multiply by 1/SCALE if doing so will not cause overflow. */

	scale = scalel * scaleu;
	if (scale != 1.f) {
	    ix = icamax_(n, &work[1], &c__1);
	    i__1 = ix;
	    if (scale < ((r__1 = work[i__1].r, dabs(r__1)) + (r__2 = r_imag(&
		    work[ix]), dabs(r__2))) * smlnum || scale == 0.f) {
		goto L20;
	    }
	    csrscl_(n, &scale, &work[1], &c__1);
	}
	goto L10;
    }

/*     Compute the estimate of the reciprocal condition number. */

    if (ainvnm != 0.f) {
	*rcond = 1.f / ainvnm / *anorm;
    }

L20:
    return 0;

/*     End of CPPCON */

} /* cppcon_ */