#include "blaswrap.h"
#include "f2c.h"

/* Subroutine */ int cpbcon_(char *uplo, integer *n, integer *kd, complex *ab,
	 integer *ldab, real *anorm, real *rcond, complex *work, real *rwork, 
	integer *info)
{
/*  -- LAPACK routine (version 3.0) --   
       Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,   
       Courant Institute, Argonne National Lab, and Rice University   
       September 30, 1994   


    Purpose   
    =======   

    CPBCON estimates the reciprocal of the condition number (in the   
    1-norm) of a complex Hermitian positive definite band matrix using   
    the Cholesky factorization A = U**H*U or A = L*L**H computed by   
    CPBTRF.   

    An estimate is obtained for norm(inv(A)), and the reciprocal of the   
    condition number is computed as RCOND = 1 / (ANORM * norm(inv(A))).   

    Arguments   
    =========   

    UPLO    (input) CHARACTER*1   
            = 'U':  Upper triangular factor stored in AB;   
            = 'L':  Lower triangular factor stored in AB.   

    N       (input) INTEGER   
            The order of the matrix A.  N >= 0.   

    KD      (input) INTEGER   
            The number of superdiagonals of the matrix A if UPLO = 'U',   
            or the number of sub-diagonals if UPLO = 'L'.  KD >= 0.   

    AB      (input) COMPLEX array, dimension (LDAB,N)   
            The triangular factor U or L from the Cholesky factorization   
            A = U**H*U or A = L*L**H of the band matrix A, stored in the   
            first KD+1 rows of the array.  The j-th column of U or L is   
            stored in the j-th column of the array AB as follows:   
            if UPLO ='U', AB(kd+1+i-j,j) = U(i,j) for max(1,j-kd)<=i<=j;   
            if UPLO ='L', AB(1+i-j,j)    = L(i,j) for j<=i<=min(n,j+kd).   

    LDAB    (input) INTEGER   
            The leading dimension of the array AB.  LDAB >= KD+1.   

    ANORM   (input) REAL   
            The 1-norm (or infinity-norm) of the Hermitian band matrix A.   

    RCOND   (output) REAL   
            The reciprocal of the condition number of the matrix A,   
            computed as RCOND = 1/(ANORM * AINVNM), where AINVNM is an   
            estimate of the 1-norm of inv(A) computed in this routine.   

    WORK    (workspace) COMPLEX array, dimension (2*N)   

    RWORK   (workspace) REAL array, dimension (N)   

    INFO    (output) INTEGER   
            = 0:  successful exit   
            < 0:  if INFO = -i, the i-th argument had an illegal value   

    =====================================================================   


       Test the input parameters.   

       Parameter adjustments */
    /* Table of constant values */
    static integer c__1 = 1;
    
    /* System generated locals */
    integer ab_dim1, ab_offset, i__1;
    real r__1, r__2;
    /* Builtin functions */
    double r_imag(complex *);
    /* Local variables */
    static integer kase;
    static real scale;
    extern logical lsame_(char *, char *);
    static logical upper;
    extern /* Subroutine */ int clacon_(integer *, complex *, complex *, real 
	    *, integer *);
    static integer ix;
    extern integer icamax_(integer *, complex *, integer *);
    static real scalel;
    extern doublereal slamch_(char *);
    extern /* Subroutine */ int clatbs_(char *, char *, char *, char *, 
	    integer *, integer *, complex *, integer *, complex *, real *, 
	    real *, integer *);
    static real scaleu;
    extern /* Subroutine */ int xerbla_(char *, integer *);
    static real ainvnm;
    extern /* Subroutine */ int csrscl_(integer *, real *, complex *, integer 
	    *);
    static char normin[1];
    static real smlnum;


    ab_dim1 = *ldab;
    ab_offset = 1 + ab_dim1 * 1;
    ab -= ab_offset;
    --work;
    --rwork;

    /* Function Body */
    *info = 0;
    upper = lsame_(uplo, "U");
    if (! upper && ! lsame_(uplo, "L")) {
	*info = -1;
    } else if (*n < 0) {
	*info = -2;
    } else if (*kd < 0) {
	*info = -3;
    } else if (*ldab < *kd + 1) {
	*info = -5;
    } else if (*anorm < 0.f) {
	*info = -6;
    }
    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("CPBCON", &i__1);
	return 0;
    }

/*     Quick return if possible */

    *rcond = 0.f;
    if (*n == 0) {
	*rcond = 1.f;
	return 0;
    } else if (*anorm == 0.f) {
	return 0;
    }

    smlnum = slamch_("Safe minimum");

/*     Estimate the 1-norm of the inverse. */

    kase = 0;
    *(unsigned char *)normin = 'N';
L10:
    clacon_(n, &work[*n + 1], &work[1], &ainvnm, &kase);
    if (kase != 0) {
	if (upper) {

/*           Multiply by inv(U'). */

	    clatbs_("Upper", "Conjugate transpose", "Non-unit", normin, n, kd,
		     &ab[ab_offset], ldab, &work[1], &scalel, &rwork[1], info);
	    *(unsigned char *)normin = 'Y';

/*           Multiply by inv(U). */

	    clatbs_("Upper", "No transpose", "Non-unit", normin, n, kd, &ab[
		    ab_offset], ldab, &work[1], &scaleu, &rwork[1], info);
	} else {

/*           Multiply by inv(L). */

	    clatbs_("Lower", "No transpose", "Non-unit", normin, n, kd, &ab[
		    ab_offset], ldab, &work[1], &scalel, &rwork[1], info);
	    *(unsigned char *)normin = 'Y';

/*           Multiply by inv(L'). */

	    clatbs_("Lower", "Conjugate transpose", "Non-unit", normin, n, kd,
		     &ab[ab_offset], ldab, &work[1], &scaleu, &rwork[1], info);
	}

/*        Multiply by 1/SCALE if doing so will not cause overflow. */

	scale = scalel * scaleu;
	if (scale != 1.f) {
	    ix = icamax_(n, &work[1], &c__1);
	    i__1 = ix;
	    if (scale < ((r__1 = work[i__1].r, dabs(r__1)) + (r__2 = r_imag(&
		    work[ix]), dabs(r__2))) * smlnum || scale == 0.f) {
		goto L20;
	    }
	    csrscl_(n, &scale, &work[1], &c__1);
	}
	goto L10;
    }

/*     Compute the estimate of the reciprocal condition number. */

    if (ainvnm != 0.f) {
	*rcond = 1.f / ainvnm / *anorm;
    }

L20:

    return 0;

/*     End of CPBCON */

} /* cpbcon_ */