#include "blaswrap.h" /* -- translated by f2c (version 19990503). You must link the resulting object file with the libraries: -lf2c -lm (in that order) */ #include "f2c.h" /* Common Block Declarations */ struct { integer infot, nunit; logical ok, lerr; } infoc_; #define infoc_1 infoc_ struct { char srnamt[6]; } srnamc_; #define srnamc_1 srnamc_ /* Table of constant values */ static integer c__2 = 2; static integer c__0 = 0; static integer c_n1 = -1; static integer c__1 = 1; static real c_b46 = 1.f; static real c_b47 = 0.f; static integer c__7 = 7; /* Subroutine */ int schkpt_(logical *dotype, integer *nn, integer *nval, integer *nns, integer *nsval, real *thresh, logical *tsterr, real *a, real *d__, real *e, real *b, real *x, real *xact, real *work, real * rwork, integer *nout) { /* Initialized data */ static integer iseedy[4] = { 0,0,0,1 }; /* Format strings */ static char fmt_9999[] = "(\002 N =\002,i5,\002, type \002,i2,\002, te" "st \002,i2,\002, ratio = \002,g12.5)"; static char fmt_9998[] = "(\002 N =\002,i5,\002, NRHS=\002,i3,\002, ty" "pe \002,i2,\002, test(\002,i2,\002) = \002,g12.5)"; /* System generated locals */ integer i__1, i__2, i__3, i__4; real r__1, r__2, r__3; /* Builtin functions Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen); integer s_wsfe(cilist *), do_fio(integer *, char *, ftnlen), e_wsfe(void); /* Local variables */ static real cond; static integer mode; static real dmax__; static integer imat, info; static char path[3], dist[1]; static integer irhs, nrhs; static char type__[1]; static integer nrun, i__, j, k; extern /* Subroutine */ int alahd_(integer *, char *); static integer n, nfail, iseed[4]; static real z__[3], rcond; extern /* Subroutine */ int sget04_(integer *, integer *, real *, integer *, real *, integer *, real *, real *), sscal_(integer *, real *, real *, integer *); static integer nimat; extern doublereal sget06_(real *, real *); static real anorm; static integer izero, nerrs; extern doublereal sasum_(integer *, real *, integer *); extern /* Subroutine */ int sptt01_(integer *, real *, real *, real *, real *, real *, real *), sptt02_(integer *, integer *, real *, real *, real *, integer *, real *, integer *, real *), scopy_( integer *, real *, integer *, real *, integer *), sptt05_(integer *, integer *, real *, real *, real *, integer *, real *, integer * , real *, integer *, real *, real *, real *); static logical zerot; extern /* Subroutine */ int slatb4_(char *, integer *, integer *, integer *, char *, integer *, integer *, real *, integer *, real *, char * ); static integer ia, in, kl; extern /* Subroutine */ int alaerh_(char *, char *, integer *, integer *, char *, integer *, integer *, integer *, integer *, integer *, integer *, integer *, integer *, integer *); static integer ku, ix; static real rcondc; extern integer isamax_(integer *, real *, integer *); extern /* Subroutine */ int alasum_(char *, integer *, integer *, integer *, integer *); static real ainvnm; extern /* Subroutine */ int slacpy_(char *, integer *, integer *, real *, integer *, real *, integer *), slaptm_(integer *, integer *, real *, real *, real *, real *, integer *, real *, real *, integer *), slatms_(integer *, integer *, char *, integer *, char *, real *, integer *, real *, real *, integer *, integer *, char * , real *, integer *, real *, integer *); extern doublereal slanst_(char *, integer *, real *, real *); extern /* Subroutine */ int serrgt_(char *, integer *), slarnv_( integer *, integer *, integer *, real *), sptcon_(integer *, real *, real *, real *, real *, real *, integer *); static real result[7]; extern /* Subroutine */ int sptrfs_(integer *, integer *, real *, real *, real *, real *, real *, integer *, real *, integer *, real *, real *, real *, integer *), spttrf_(integer *, real *, real *, integer *), spttrs_(integer *, integer *, real *, real *, real *, integer *, integer *); static integer lda; /* Fortran I/O blocks */ static cilist io___29 = { 0, 0, 0, fmt_9999, 0 }; static cilist io___35 = { 0, 0, 0, fmt_9998, 0 }; static cilist io___37 = { 0, 0, 0, fmt_9999, 0 }; /* -- LAPACK test routine (version 3.0) -- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., Courant Institute, Argonne National Lab, and Rice University June 30, 1999 Purpose ======= SCHKPT tests SPTTRF, -TRS, -RFS, and -CON Arguments ========= DOTYPE (input) LOGICAL array, dimension (NTYPES) The matrix types to be used for testing. Matrices of type j (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) = .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used. NN (input) INTEGER The number of values of N contained in the vector NVAL. NVAL (input) INTEGER array, dimension (NN) The values of the matrix dimension N. NNS (input) INTEGER The number of values of NRHS contained in the vector NSVAL. NSVAL (input) INTEGER array, dimension (NNS) The values of the number of right hand sides NRHS. THRESH (input) REAL The threshold value for the test ratios. A result is included in the output file if RESULT >= THRESH. To have every test ratio printed, use THRESH = 0. TSTERR (input) LOGICAL Flag that indicates whether error exits are to be tested. A (workspace) REAL array, dimension (NMAX*2) D (workspace) REAL array, dimension (NMAX*2) E (workspace) REAL array, dimension (NMAX*2) B (workspace) REAL array, dimension (NMAX*NSMAX) where NSMAX is the largest entry in NSVAL. X (workspace) REAL array, dimension (NMAX*NSMAX) XACT (workspace) REAL array, dimension (NMAX*NSMAX) WORK (workspace) REAL array, dimension (NMAX*max(3,NSMAX)) RWORK (workspace) REAL array, dimension (max(NMAX,2*NSMAX)) NOUT (input) INTEGER The unit number for output. ===================================================================== Parameter adjustments */ --rwork; --work; --xact; --x; --b; --e; --d__; --a; --nsval; --nval; --dotype; /* Function Body */ s_copy(path, "Single precision", (ftnlen)1, (ftnlen)16); s_copy(path + 1, "PT", (ftnlen)2, (ftnlen)2); nrun = 0; nfail = 0; nerrs = 0; for (i__ = 1; i__ <= 4; ++i__) { iseed[i__ - 1] = iseedy[i__ - 1]; /* L10: */ } /* Test the error exits */ if (*tsterr) { serrgt_(path, nout); } infoc_1.infot = 0; i__1 = *nn; for (in = 1; in <= i__1; ++in) { /* Do for each value of N in NVAL. */ n = nval[in]; lda = max(1,n); nimat = 12; if (n <= 0) { nimat = 1; } i__2 = nimat; for (imat = 1; imat <= i__2; ++imat) { /* Do the tests only if DOTYPE( IMAT ) is true. */ if (n > 0 && ! dotype[imat]) { goto L100; } /* Set up parameters with SLATB4. */ slatb4_(path, &imat, &n, &n, type__, &kl, &ku, &anorm, &mode, & cond, dist); zerot = imat >= 8 && imat <= 10; if (imat <= 6) { /* Type 1-6: generate a symmetric tridiagonal matrix of known condition number in lower triangular band storage. */ s_copy(srnamc_1.srnamt, "SLATMS", (ftnlen)6, (ftnlen)6); slatms_(&n, &n, dist, iseed, type__, &rwork[1], &mode, &cond, &anorm, &kl, &ku, "B", &a[1], &c__2, &work[1], &info); /* Check the error code from SLATMS. */ if (info != 0) { alaerh_(path, "SLATMS", &info, &c__0, " ", &n, &n, &kl, & ku, &c_n1, &imat, &nfail, &nerrs, nout); goto L100; } izero = 0; /* Copy the matrix to D and E. */ ia = 1; i__3 = n - 1; for (i__ = 1; i__ <= i__3; ++i__) { d__[i__] = a[ia]; e[i__] = a[ia + 1]; ia += 2; /* L20: */ } if (n > 0) { d__[n] = a[ia]; } } else { /* Type 7-12: generate a diagonally dominant matrix with unknown condition number in the vectors D and E. */ if (! zerot || ! dotype[7]) { /* Let D and E have values from [-1,1]. */ slarnv_(&c__2, iseed, &n, &d__[1]); i__3 = n - 1; slarnv_(&c__2, iseed, &i__3, &e[1]); /* Make the tridiagonal matrix diagonally dominant. */ if (n == 1) { d__[1] = dabs(d__[1]); } else { d__[1] = dabs(d__[1]) + dabs(e[1]); d__[n] = (r__1 = d__[n], dabs(r__1)) + (r__2 = e[n - 1], dabs(r__2)); i__3 = n - 1; for (i__ = 2; i__ <= i__3; ++i__) { d__[i__] = (r__1 = d__[i__], dabs(r__1)) + (r__2 = e[i__], dabs(r__2)) + (r__3 = e[i__ - 1], dabs(r__3)); /* L30: */ } } /* Scale D and E so the maximum element is ANORM. */ ix = isamax_(&n, &d__[1], &c__1); dmax__ = d__[ix]; r__1 = anorm / dmax__; sscal_(&n, &r__1, &d__[1], &c__1); i__3 = n - 1; r__1 = anorm / dmax__; sscal_(&i__3, &r__1, &e[1], &c__1); } else if (izero > 0) { /* Reuse the last matrix by copying back the zeroed out elements. */ if (izero == 1) { d__[1] = z__[1]; if (n > 1) { e[1] = z__[2]; } } else if (izero == n) { e[n - 1] = z__[0]; d__[n] = z__[1]; } else { e[izero - 1] = z__[0]; d__[izero] = z__[1]; e[izero] = z__[2]; } } /* For types 8-10, set one row and column of the matrix to zero. */ izero = 0; if (imat == 8) { izero = 1; z__[1] = d__[1]; d__[1] = 0.f; if (n > 1) { z__[2] = e[1]; e[1] = 0.f; } } else if (imat == 9) { izero = n; if (n > 1) { z__[0] = e[n - 1]; e[n - 1] = 0.f; } z__[1] = d__[n]; d__[n] = 0.f; } else if (imat == 10) { izero = (n + 1) / 2; if (izero > 1) { z__[0] = e[izero - 1]; e[izero - 1] = 0.f; z__[2] = e[izero]; e[izero] = 0.f; } z__[1] = d__[izero]; d__[izero] = 0.f; } } scopy_(&n, &d__[1], &c__1, &d__[n + 1], &c__1); if (n > 1) { i__3 = n - 1; scopy_(&i__3, &e[1], &c__1, &e[n + 1], &c__1); } /* + TEST 1 Factor A as L*D*L' and compute the ratio norm(L*D*L' - A) / (n * norm(A) * EPS ) */ spttrf_(&n, &d__[n + 1], &e[n + 1], &info); /* Check error code from SPTTRF. */ if (info != izero) { alaerh_(path, "SPTTRF", &info, &izero, " ", &n, &n, &c_n1, & c_n1, &c_n1, &imat, &nfail, &nerrs, nout); goto L100; } if (info > 0) { rcondc = 0.f; goto L90; } sptt01_(&n, &d__[1], &e[1], &d__[n + 1], &e[n + 1], &work[1], result); /* Print the test ratio if greater than or equal to THRESH. */ if (result[0] >= *thresh) { if (nfail == 0 && nerrs == 0) { alahd_(nout, path); } io___29.ciunit = *nout; s_wsfe(&io___29); do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&imat, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&c__1, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&result[0], (ftnlen)sizeof(real)); e_wsfe(); ++nfail; } ++nrun; /* Compute RCONDC = 1 / (norm(A) * norm(inv(A)) Compute norm(A). */ anorm = slanst_("1", &n, &d__[1], &e[1]); /* Use SPTTRS to solve for one column at a time of inv(A), computing the maximum column sum as we go. */ ainvnm = 0.f; i__3 = n; for (i__ = 1; i__ <= i__3; ++i__) { i__4 = n; for (j = 1; j <= i__4; ++j) { x[j] = 0.f; /* L40: */ } x[i__] = 1.f; spttrs_(&n, &c__1, &d__[n + 1], &e[n + 1], &x[1], &lda, &info) ; /* Computing MAX */ r__1 = ainvnm, r__2 = sasum_(&n, &x[1], &c__1); ainvnm = dmax(r__1,r__2); /* L50: */ } /* Computing MAX */ r__1 = 1.f, r__2 = anorm * ainvnm; rcondc = 1.f / dmax(r__1,r__2); i__3 = *nns; for (irhs = 1; irhs <= i__3; ++irhs) { nrhs = nsval[irhs]; /* Generate NRHS random solution vectors. */ ix = 1; i__4 = nrhs; for (j = 1; j <= i__4; ++j) { slarnv_(&c__2, iseed, &n, &xact[ix]); ix += lda; /* L60: */ } /* Set the right hand side. */ slaptm_(&n, &nrhs, &c_b46, &d__[1], &e[1], &xact[1], &lda, & c_b47, &b[1], &lda); /* + TEST 2 Solve A*x = b and compute the residual. */ slacpy_("Full", &n, &nrhs, &b[1], &lda, &x[1], &lda); spttrs_(&n, &nrhs, &d__[n + 1], &e[n + 1], &x[1], &lda, &info) ; /* Check error code from SPTTRS. */ if (info != 0) { alaerh_(path, "SPTTRS", &info, &c__0, " ", &n, &n, &c_n1, &c_n1, &nrhs, &imat, &nfail, &nerrs, nout); } slacpy_("Full", &n, &nrhs, &b[1], &lda, &work[1], &lda); sptt02_(&n, &nrhs, &d__[1], &e[1], &x[1], &lda, &work[1], & lda, &result[1]); /* + TEST 3 Check solution from generated exact solution. */ sget04_(&n, &nrhs, &x[1], &lda, &xact[1], &lda, &rcondc, & result[2]); /* + TESTS 4, 5, and 6 Use iterative refinement to improve the solution. */ s_copy(srnamc_1.srnamt, "SPTRFS", (ftnlen)6, (ftnlen)6); sptrfs_(&n, &nrhs, &d__[1], &e[1], &d__[n + 1], &e[n + 1], &b[ 1], &lda, &x[1], &lda, &rwork[1], &rwork[nrhs + 1], & work[1], &info); /* Check error code from SPTRFS. */ if (info != 0) { alaerh_(path, "SPTRFS", &info, &c__0, " ", &n, &n, &c_n1, &c_n1, &nrhs, &imat, &nfail, &nerrs, nout); } sget04_(&n, &nrhs, &x[1], &lda, &xact[1], &lda, &rcondc, & result[3]); sptt05_(&n, &nrhs, &d__[1], &e[1], &b[1], &lda, &x[1], &lda, & xact[1], &lda, &rwork[1], &rwork[nrhs + 1], &result[4] ); /* Print information about the tests that did not pass the threshold. */ for (k = 2; k <= 6; ++k) { if (result[k - 1] >= *thresh) { if (nfail == 0 && nerrs == 0) { alahd_(nout, path); } io___35.ciunit = *nout; s_wsfe(&io___35); do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&nrhs, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&imat, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&k, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&result[k - 1], (ftnlen)sizeof( real)); e_wsfe(); ++nfail; } /* L70: */ } nrun += 5; /* L80: */ } /* + TEST 7 Estimate the reciprocal of the condition number of the matrix. */ L90: s_copy(srnamc_1.srnamt, "SPTCON", (ftnlen)6, (ftnlen)6); sptcon_(&n, &d__[n + 1], &e[n + 1], &anorm, &rcond, &rwork[1], & info); /* Check error code from SPTCON. */ if (info != 0) { alaerh_(path, "SPTCON", &info, &c__0, " ", &n, &n, &c_n1, & c_n1, &c_n1, &imat, &nfail, &nerrs, nout); } result[6] = sget06_(&rcond, &rcondc); /* Print the test ratio if greater than or equal to THRESH. */ if (result[6] >= *thresh) { if (nfail == 0 && nerrs == 0) { alahd_(nout, path); } io___37.ciunit = *nout; s_wsfe(&io___37); do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&imat, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&c__7, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&result[6], (ftnlen)sizeof(real)); e_wsfe(); ++nfail; } ++nrun; L100: ; } /* L110: */ } /* Print a summary of the results. */ alasum_(path, nout, &nfail, &nrun, &nerrs); return 0; /* End of SCHKPT */ } /* schkpt_ */