#include "blaswrap.h"
/*  -- translated by f2c (version 19990503).
   You must link the resulting object file with the libraries:
	-lf2c -lm   (in that order)
*/

#include "f2c.h"

/* Common Block Declarations */

struct {
    integer infot, nunit;
    logical ok, lerr;
} infoc_;

#define infoc_1 infoc_

struct {
    char srnamt[6];
} srnamc_;

#define srnamc_1 srnamc_

/* Table of constant values */

static integer c__1 = 1;
static integer c__2 = 2;
static integer c__0 = 0;
static integer c_n1 = -1;
static doublereal c_b20 = 0.;
static integer c__6 = 6;
static integer c__7 = 7;

/* Subroutine */ int ddrvge_(logical *dotype, integer *nn, integer *nval, 
	integer *nrhs, doublereal *thresh, logical *tsterr, integer *nmax, 
	doublereal *a, doublereal *afac, doublereal *asav, doublereal *b, 
	doublereal *bsav, doublereal *x, doublereal *xact, doublereal *s, 
	doublereal *work, doublereal *rwork, integer *iwork, integer *nout)
{
    /* Initialized data */

    static integer iseedy[4] = { 1988,1989,1990,1991 };
    static char transs[1*3] = "N" "T" "C";
    static char facts[1*3] = "F" "N" "E";
    static char equeds[1*4] = "N" "R" "C" "B";

    /* Format strings */
    static char fmt_9999[] = "(1x,a6,\002, N =\002,i5,\002, type \002,i2,"
	    "\002, test(\002,i2,\002) =\002,g12.5)";
    static char fmt_9997[] = "(1x,a6,\002, FACT='\002,a1,\002', TRANS='\002,"
	    "a1,\002', N=\002,i5,\002, EQUED='\002,a1,\002', type \002,i2,"
	    "\002, test(\002,i1,\002)=\002,g12.5)";
    static char fmt_9998[] = "(1x,a6,\002, FACT='\002,a1,\002', TRANS='\002,"
	    "a1,\002', N=\002,i5,\002, type \002,i2,\002, test(\002,i1,\002)"
	    "=\002,g12.5)";

    /* System generated locals */
    address a__1[2];
    integer i__1, i__2, i__3, i__4, i__5[2];
    doublereal d__1;
    char ch__1[2];

    /* Builtin functions   
       Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen);
    integer s_wsfe(cilist *), do_fio(integer *, char *, ftnlen), e_wsfe(void);
    /* Subroutine */ int s_cat(char *, char **, integer *, integer *, ftnlen);

    /* Local variables */
    static char fact[1];
    static integer ioff, mode;
    static doublereal amax;
    static char path[3];
    static integer imat, info;
    static char dist[1], type__[1];
    static integer nrun, i__, k, n;
    extern /* Subroutine */ int dget01_(integer *, integer *, doublereal *, 
	    integer *, doublereal *, integer *, integer *, doublereal *, 
	    doublereal *), dget02_(char *, integer *, integer *, integer *, 
	    doublereal *, integer *, doublereal *, integer *, doublereal *, 
	    integer *, doublereal *, doublereal *);
    static integer ifact;
    extern /* Subroutine */ int dget04_(integer *, integer *, doublereal *, 
	    integer *, doublereal *, integer *, doublereal *, doublereal *);
    static integer nfail, iseed[4], nfact;
    extern doublereal dget06_(doublereal *, doublereal *);
    extern /* Subroutine */ int dget07_(char *, integer *, integer *, 
	    doublereal *, integer *, doublereal *, integer *, doublereal *, 
	    integer *, doublereal *, integer *, doublereal *, doublereal *, 
	    doublereal *);
    extern logical lsame_(char *, char *);
    static char equed[1];
    static integer nbmin;
    static doublereal rcond, roldc;
    static integer nimat;
    static doublereal roldi;
    extern /* Subroutine */ int dgesv_(integer *, integer *, doublereal *, 
	    integer *, integer *, doublereal *, integer *, integer *);
    static doublereal anorm;
    static integer itran;
    static logical equil;
    static doublereal roldo;
    static char trans[1];
    static integer izero, nerrs, k1, lwork;
    static logical zerot;
    static char xtype[1];
    extern /* Subroutine */ int dlatb4_(char *, integer *, integer *, integer 
	    *, char *, integer *, integer *, doublereal *, integer *, 
	    doublereal *, char *), aladhd_(integer *, 
	    char *);
    static integer nb, in, kl;
    extern doublereal dlamch_(char *), dlange_(char *, integer *, 
	    integer *, doublereal *, integer *, doublereal *);
    extern /* Subroutine */ int alaerh_(char *, char *, integer *, integer *, 
	    char *, integer *, integer *, integer *, integer *, integer *, 
	    integer *, integer *, integer *, integer *), dlaqge_(integer *, integer *, doublereal *, integer *, 
	    doublereal *, doublereal *, doublereal *, doublereal *, 
	    doublereal *, char *);
    static logical prefac;
    static integer ku, nt;
    static doublereal colcnd, rcondc;
    static logical nofact;
    static integer iequed;
    extern /* Subroutine */ int dgeequ_(integer *, integer *, doublereal *, 
	    integer *, doublereal *, doublereal *, doublereal *, doublereal *,
	     doublereal *, integer *);
    static doublereal rcondi;
    extern /* Subroutine */ int dgetrf_(integer *, integer *, doublereal *, 
	    integer *, integer *, integer *), dgetri_(integer *, doublereal *,
	     integer *, integer *, doublereal *, integer *, integer *), 
	    dlacpy_(char *, integer *, integer *, doublereal *, integer *, 
	    doublereal *, integer *), alasvm_(char *, integer *, 
	    integer *, integer *, integer *);
    static doublereal cndnum, anormi, rcondo, ainvnm;
    extern doublereal dlantr_(char *, char *, char *, integer *, integer *, 
	    doublereal *, integer *, doublereal *);
    extern /* Subroutine */ int dlarhs_(char *, char *, char *, char *, 
	    integer *, integer *, integer *, integer *, integer *, doublereal 
	    *, integer *, doublereal *, integer *, doublereal *, integer *, 
	    integer *, integer *);
    static logical trfcon;
    static doublereal anormo, rowcnd;
    extern /* Subroutine */ int dlaset_(char *, integer *, integer *, 
	    doublereal *, doublereal *, doublereal *, integer *), 
	    dgesvx_(char *, char *, integer *, integer *, doublereal *, 
	    integer *, doublereal *, integer *, integer *, char *, doublereal 
	    *, doublereal *, doublereal *, integer *, doublereal *, integer *,
	     doublereal *, doublereal *, doublereal *, doublereal *, integer *
	    , integer *), dlatms_(integer *, integer *
	    , char *, integer *, char *, doublereal *, integer *, doublereal *
	    , doublereal *, integer *, integer *, char *, doublereal *, 
	    integer *, doublereal *, integer *), 
	    xlaenv_(integer *, integer *), derrvx_(char *, integer *);
    static doublereal result[7], rpvgrw;
    static integer lda;

    /* Fortran I/O blocks */
    static cilist io___55 = { 0, 0, 0, fmt_9999, 0 };
    static cilist io___61 = { 0, 0, 0, fmt_9997, 0 };
    static cilist io___62 = { 0, 0, 0, fmt_9998, 0 };
    static cilist io___63 = { 0, 0, 0, fmt_9997, 0 };
    static cilist io___64 = { 0, 0, 0, fmt_9998, 0 };
    static cilist io___65 = { 0, 0, 0, fmt_9997, 0 };
    static cilist io___66 = { 0, 0, 0, fmt_9998, 0 };
    static cilist io___67 = { 0, 0, 0, fmt_9997, 0 };
    static cilist io___68 = { 0, 0, 0, fmt_9998, 0 };



/*  -- LAPACK test routine (version 3.0) --   
       Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,   
       Courant Institute, Argonne National Lab, and Rice University   
       June 30, 1999   


    Purpose   
    =======   

    DDRVGE tests the driver routines DGESV and -SVX.   

    Arguments   
    =========   

    DOTYPE  (input) LOGICAL array, dimension (NTYPES)   
            The matrix types to be used for testing.  Matrices of type j   
            (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) =   
            .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used.   

    NN      (input) INTEGER   
            The number of values of N contained in the vector NVAL.   

    NVAL    (input) INTEGER array, dimension (NN)   
            The values of the matrix column dimension N.   

    NRHS    (input) INTEGER   
            The number of right hand side vectors to be generated for   
            each linear system.   

    THRESH  (input) DOUBLE PRECISION   
            The threshold value for the test ratios.  A result is   
            included in the output file if RESULT >= THRESH.  To have   
            every test ratio printed, use THRESH = 0.   

    TSTERR  (input) LOGICAL   
            Flag that indicates whether error exits are to be tested.   

    NMAX    (input) INTEGER   
            The maximum value permitted for N, used in dimensioning the   
            work arrays.   

    A       (workspace) DOUBLE PRECISION array, dimension (NMAX*NMAX)   

    AFAC    (workspace) DOUBLE PRECISION array, dimension (NMAX*NMAX)   

    ASAV    (workspace) DOUBLE PRECISION array, dimension (NMAX*NMAX)   

    B       (workspace) DOUBLE PRECISION array, dimension (NMAX*NRHS)   

    BSAV    (workspace) DOUBLE PRECISION array, dimension (NMAX*NRHS)   

    X       (workspace) DOUBLE PRECISION array, dimension (NMAX*NRHS)   

    XACT    (workspace) DOUBLE PRECISION array, dimension (NMAX*NRHS)   

    S       (workspace) DOUBLE PRECISION array, dimension (2*NMAX)   

    WORK    (workspace) DOUBLE PRECISION array, dimension   
                        (NMAX*max(3,NRHS))   

    RWORK   (workspace) DOUBLE PRECISION array, dimension (2*NRHS+NMAX)   

    IWORK   (workspace) INTEGER array, dimension (2*NMAX)   

    NOUT    (input) INTEGER   
            The unit number for output.   

    =====================================================================   

       Parameter adjustments */
    --iwork;
    --rwork;
    --work;
    --s;
    --xact;
    --x;
    --bsav;
    --b;
    --asav;
    --afac;
    --a;
    --nval;
    --dotype;

    /* Function Body   

       Initialize constants and the random number seed. */

    s_copy(path, "Double precision", (ftnlen)1, (ftnlen)16);
    s_copy(path + 1, "GE", (ftnlen)2, (ftnlen)2);
    nrun = 0;
    nfail = 0;
    nerrs = 0;
    for (i__ = 1; i__ <= 4; ++i__) {
	iseed[i__ - 1] = iseedy[i__ - 1];
/* L10: */
    }

/*     Test the error exits */

    if (*tsterr) {
	derrvx_(path, nout);
    }
    infoc_1.infot = 0;

/*     Set the block size and minimum block size for testing. */

    nb = 1;
    nbmin = 2;
    xlaenv_(&c__1, &nb);
    xlaenv_(&c__2, &nbmin);

/*     Do for each value of N in NVAL */

    i__1 = *nn;
    for (in = 1; in <= i__1; ++in) {
	n = nval[in];
	lda = max(n,1);
	*(unsigned char *)xtype = 'N';
	nimat = 11;
	if (n <= 0) {
	    nimat = 1;
	}

	i__2 = nimat;
	for (imat = 1; imat <= i__2; ++imat) {

/*           Do the tests only if DOTYPE( IMAT ) is true. */

	    if (! dotype[imat]) {
		goto L80;
	    }

/*           Skip types 5, 6, or 7 if the matrix size is too small. */

	    zerot = imat >= 5 && imat <= 7;
	    if (zerot && n < imat - 4) {
		goto L80;
	    }

/*           Set up parameters with DLATB4 and generate a test matrix   
             with DLATMS. */

	    dlatb4_(path, &imat, &n, &n, type__, &kl, &ku, &anorm, &mode, &
		    cndnum, dist);
	    rcondc = 1. / cndnum;

	    s_copy(srnamc_1.srnamt, "DLATMS", (ftnlen)6, (ftnlen)6);
	    dlatms_(&n, &n, dist, iseed, type__, &rwork[1], &mode, &cndnum, &
		    anorm, &kl, &ku, "No packing", &a[1], &lda, &work[1], &
		    info);

/*           Check error code from DLATMS. */

	    if (info != 0) {
		alaerh_(path, "DLATMS", &info, &c__0, " ", &n, &n, &c_n1, &
			c_n1, &c_n1, &imat, &nfail, &nerrs, nout);
		goto L80;
	    }

/*           For types 5-7, zero one or more columns of the matrix to   
             test that INFO is returned correctly. */

	    if (zerot) {
		if (imat == 5) {
		    izero = 1;
		} else if (imat == 6) {
		    izero = n;
		} else {
		    izero = n / 2 + 1;
		}
		ioff = (izero - 1) * lda;
		if (imat < 7) {
		    i__3 = n;
		    for (i__ = 1; i__ <= i__3; ++i__) {
			a[ioff + i__] = 0.;
/* L20: */
		    }
		} else {
		    i__3 = n - izero + 1;
		    dlaset_("Full", &n, &i__3, &c_b20, &c_b20, &a[ioff + 1], &
			    lda);
		}
	    } else {
		izero = 0;
	    }

/*           Save a copy of the matrix A in ASAV. */

	    dlacpy_("Full", &n, &n, &a[1], &lda, &asav[1], &lda);

	    for (iequed = 1; iequed <= 4; ++iequed) {
		*(unsigned char *)equed = *(unsigned char *)&equeds[iequed - 
			1];
		if (iequed == 1) {
		    nfact = 3;
		} else {
		    nfact = 1;
		}

		i__3 = nfact;
		for (ifact = 1; ifact <= i__3; ++ifact) {
		    *(unsigned char *)fact = *(unsigned char *)&facts[ifact - 
			    1];
		    prefac = lsame_(fact, "F");
		    nofact = lsame_(fact, "N");
		    equil = lsame_(fact, "E");

		    if (zerot) {
			if (prefac) {
			    goto L60;
			}
			rcondo = 0.;
			rcondi = 0.;

		    } else if (! nofact) {

/*                    Compute the condition number for comparison with   
                      the value returned by DGESVX (FACT = 'N' reuses   
                      the condition number from the previous iteration   
                      with FACT = 'F'). */

			dlacpy_("Full", &n, &n, &asav[1], &lda, &afac[1], &
				lda);
			if (equil || iequed > 1) {

/*                       Compute row and column scale factors to   
                         equilibrate the matrix A. */

			    dgeequ_(&n, &n, &afac[1], &lda, &s[1], &s[n + 1], 
				    &rowcnd, &colcnd, &amax, &info);
			    if (info == 0 && n > 0) {
				if (lsame_(equed, "R")) 
					{
				    rowcnd = 0.;
				    colcnd = 1.;
				} else if (lsame_(equed, "C")) {
				    rowcnd = 1.;
				    colcnd = 0.;
				} else if (lsame_(equed, "B")) {
				    rowcnd = 0.;
				    colcnd = 0.;
				}

/*                          Equilibrate the matrix. */

				dlaqge_(&n, &n, &afac[1], &lda, &s[1], &s[n + 
					1], &rowcnd, &colcnd, &amax, equed);
			    }
			}

/*                    Save the condition number of the non-equilibrated   
                      system for use in DGET04. */

			if (equil) {
			    roldo = rcondo;
			    roldi = rcondi;
			}

/*                    Compute the 1-norm and infinity-norm of A. */

			anormo = dlange_("1", &n, &n, &afac[1], &lda, &rwork[
				1]);
			anormi = dlange_("I", &n, &n, &afac[1], &lda, &rwork[
				1]);

/*                    Factor the matrix A. */

			dgetrf_(&n, &n, &afac[1], &lda, &iwork[1], &info);

/*                    Form the inverse of A. */

			dlacpy_("Full", &n, &n, &afac[1], &lda, &a[1], &lda);
			lwork = *nmax * max(3,*nrhs);
			dgetri_(&n, &a[1], &lda, &iwork[1], &work[1], &lwork, 
				&info);

/*                    Compute the 1-norm condition number of A. */

			ainvnm = dlange_("1", &n, &n, &a[1], &lda, &rwork[1]);
			if (anormo <= 0. || ainvnm <= 0.) {
			    rcondo = 1.;
			} else {
			    rcondo = 1. / anormo / ainvnm;
			}

/*                    Compute the infinity-norm condition number of A. */

			ainvnm = dlange_("I", &n, &n, &a[1], &lda, &rwork[1]);
			if (anormi <= 0. || ainvnm <= 0.) {
			    rcondi = 1.;
			} else {
			    rcondi = 1. / anormi / ainvnm;
			}
		    }

		    for (itran = 1; itran <= 3; ++itran) {

/*                    Do for each value of TRANS. */

			*(unsigned char *)trans = *(unsigned char *)&transs[
				itran - 1];
			if (itran == 1) {
			    rcondc = rcondo;
			} else {
			    rcondc = rcondi;
			}

/*                    Restore the matrix A. */

			dlacpy_("Full", &n, &n, &asav[1], &lda, &a[1], &lda);

/*                    Form an exact solution and set the right hand side. */

			s_copy(srnamc_1.srnamt, "DLARHS", (ftnlen)6, (ftnlen)
				6);
			dlarhs_(path, xtype, "Full", trans, &n, &n, &kl, &ku, 
				nrhs, &a[1], &lda, &xact[1], &lda, &b[1], &
				lda, iseed, &info);
			*(unsigned char *)xtype = 'C';
			dlacpy_("Full", &n, nrhs, &b[1], &lda, &bsav[1], &lda);

			if (nofact && itran == 1) {

/*                       --- Test DGESV  ---   

                         Compute the LU factorization of the matrix and   
                         solve the system. */

			    dlacpy_("Full", &n, &n, &a[1], &lda, &afac[1], &
				    lda);
			    dlacpy_("Full", &n, nrhs, &b[1], &lda, &x[1], &
				    lda);

			    s_copy(srnamc_1.srnamt, "DGESV ", (ftnlen)6, (
				    ftnlen)6);
			    dgesv_(&n, nrhs, &afac[1], &lda, &iwork[1], &x[1],
				     &lda, &info);

/*                       Check error code from DGESV . */

			    if (info != izero) {
				alaerh_(path, "DGESV ", &info, &izero, " ", &
					n, &n, &c_n1, &c_n1, nrhs, &imat, &
					nfail, &nerrs, nout);
			    }

/*                       Reconstruct matrix from factors and compute   
                         residual. */

			    dget01_(&n, &n, &a[1], &lda, &afac[1], &lda, &
				    iwork[1], &rwork[1], result);
			    nt = 1;
			    if (izero == 0) {

/*                          Compute residual of the computed solution. */

				dlacpy_("Full", &n, nrhs, &b[1], &lda, &work[
					1], &lda);
				dget02_("No transpose", &n, &n, nrhs, &a[1], &
					lda, &x[1], &lda, &work[1], &lda, &
					rwork[1], &result[1]);

/*                          Check solution from generated exact solution. */

				dget04_(&n, nrhs, &x[1], &lda, &xact[1], &lda,
					 &rcondc, &result[2]);
				nt = 3;
			    }

/*                       Print information about the tests that did not   
                         pass the threshold. */

			    i__4 = nt;
			    for (k = 1; k <= i__4; ++k) {
				if (result[k - 1] >= *thresh) {
				    if (nfail == 0 && nerrs == 0) {
					aladhd_(nout, path);
				    }
				    io___55.ciunit = *nout;
				    s_wsfe(&io___55);
				    do_fio(&c__1, "DGESV ", (ftnlen)6);
				    do_fio(&c__1, (char *)&n, (ftnlen)sizeof(
					    integer));
				    do_fio(&c__1, (char *)&imat, (ftnlen)
					    sizeof(integer));
				    do_fio(&c__1, (char *)&k, (ftnlen)sizeof(
					    integer));
				    do_fio(&c__1, (char *)&result[k - 1], (
					    ftnlen)sizeof(doublereal));
				    e_wsfe();
				    ++nfail;
				}
/* L30: */
			    }
			    nrun += nt;
			}

/*                    --- Test DGESVX --- */

			if (! prefac) {
			    dlaset_("Full", &n, &n, &c_b20, &c_b20, &afac[1], 
				    &lda);
			}
			dlaset_("Full", &n, nrhs, &c_b20, &c_b20, &x[1], &lda);
			if (iequed > 1 && n > 0) {

/*                       Equilibrate the matrix if FACT = 'F' and   
                         EQUED = 'R', 'C', or 'B'. */

			    dlaqge_(&n, &n, &a[1], &lda, &s[1], &s[n + 1], &
				    rowcnd, &colcnd, &amax, equed);
			}

/*                    Solve the system and compute the condition number   
                      and error bounds using DGESVX. */

			s_copy(srnamc_1.srnamt, "DGESVX", (ftnlen)6, (ftnlen)
				6);
			dgesvx_(fact, trans, &n, nrhs, &a[1], &lda, &afac[1], 
				&lda, &iwork[1], equed, &s[1], &s[n + 1], &b[
				1], &lda, &x[1], &lda, &rcond, &rwork[1], &
				rwork[*nrhs + 1], &work[1], &iwork[n + 1], &
				info);

/*                    Check the error code from DGESVX. */

			if (info != izero) {
/* Writing concatenation */
			    i__5[0] = 1, a__1[0] = fact;
			    i__5[1] = 1, a__1[1] = trans;
			    s_cat(ch__1, a__1, i__5, &c__2, (ftnlen)2);
			    alaerh_(path, "DGESVX", &info, &izero, ch__1, &n, 
				    &n, &c_n1, &c_n1, nrhs, &imat, &nfail, &
				    nerrs, nout);
			}

/*                    Compare WORK(1) from DGESVX with the computed   
                      reciprocal pivot growth factor RPVGRW */

			if (info != 0) {
			    rpvgrw = dlantr_("M", "U", "N", &info, &info, &
				    afac[1], &lda, &work[1]);
			    if (rpvgrw == 0.) {
				rpvgrw = 1.;
			    } else {
				rpvgrw = dlange_("M", &n, &info, &a[1], &lda, 
					&work[1]) / rpvgrw;
			    }
			} else {
			    rpvgrw = dlantr_("M", "U", "N", &n, &n, &afac[1], 
				    &lda, &work[1]);
			    if (rpvgrw == 0.) {
				rpvgrw = 1.;
			    } else {
				rpvgrw = dlange_("M", &n, &n, &a[1], &lda, &
					work[1]) / rpvgrw;
			    }
			}
			result[6] = (d__1 = rpvgrw - work[1], abs(d__1)) / 
				max(work[1],rpvgrw) / dlamch_("E");

			if (! prefac) {

/*                       Reconstruct matrix from factors and compute   
                         residual. */

			    dget01_(&n, &n, &a[1], &lda, &afac[1], &lda, &
				    iwork[1], &rwork[(*nrhs << 1) + 1], 
				    result);
			    k1 = 1;
			} else {
			    k1 = 2;
			}

			if (info == 0) {
			    trfcon = FALSE_;

/*                       Compute residual of the computed solution. */

			    dlacpy_("Full", &n, nrhs, &bsav[1], &lda, &work[1]
				    , &lda);
			    dget02_(trans, &n, &n, nrhs, &asav[1], &lda, &x[1]
				    , &lda, &work[1], &lda, &rwork[(*nrhs << 
				    1) + 1], &result[1]);

/*                       Check solution from generated exact solution. */

			    if (nofact || prefac && lsame_(equed, "N")) {
				dget04_(&n, nrhs, &x[1], &lda, &xact[1], &lda,
					 &rcondc, &result[2]);
			    } else {
				if (itran == 1) {
				    roldc = roldo;
				} else {
				    roldc = roldi;
				}
				dget04_(&n, nrhs, &x[1], &lda, &xact[1], &lda,
					 &roldc, &result[2]);
			    }

/*                       Check the error bounds from iterative   
                         refinement. */

			    dget07_(trans, &n, nrhs, &asav[1], &lda, &b[1], &
				    lda, &x[1], &lda, &xact[1], &lda, &rwork[
				    1], &rwork[*nrhs + 1], &result[3]);
			} else {
			    trfcon = TRUE_;
			}

/*                    Compare RCOND from DGESVX with the computed value   
                      in RCONDC. */

			result[5] = dget06_(&rcond, &rcondc);

/*                    Print information about the tests that did not pass   
                      the threshold. */

			if (! trfcon) {
			    for (k = k1; k <= 7; ++k) {
				if (result[k - 1] >= *thresh) {
				    if (nfail == 0 && nerrs == 0) {
					aladhd_(nout, path);
				    }
				    if (prefac) {
					io___61.ciunit = *nout;
					s_wsfe(&io___61);
					do_fio(&c__1, "DGESVX", (ftnlen)6);
					do_fio(&c__1, fact, (ftnlen)1);
					do_fio(&c__1, trans, (ftnlen)1);
					do_fio(&c__1, (char *)&n, (ftnlen)
						sizeof(integer));
					do_fio(&c__1, equed, (ftnlen)1);
					do_fio(&c__1, (char *)&imat, (ftnlen)
						sizeof(integer));
					do_fio(&c__1, (char *)&k, (ftnlen)
						sizeof(integer));
					do_fio(&c__1, (char *)&result[k - 1], 
						(ftnlen)sizeof(doublereal));
					e_wsfe();
				    } else {
					io___62.ciunit = *nout;
					s_wsfe(&io___62);
					do_fio(&c__1, "DGESVX", (ftnlen)6);
					do_fio(&c__1, fact, (ftnlen)1);
					do_fio(&c__1, trans, (ftnlen)1);
					do_fio(&c__1, (char *)&n, (ftnlen)
						sizeof(integer));
					do_fio(&c__1, (char *)&imat, (ftnlen)
						sizeof(integer));
					do_fio(&c__1, (char *)&k, (ftnlen)
						sizeof(integer));
					do_fio(&c__1, (char *)&result[k - 1], 
						(ftnlen)sizeof(doublereal));
					e_wsfe();
				    }
				    ++nfail;
				}
/* L40: */
			    }
			    nrun = nrun + 7 - k1;
			} else {
			    if (result[0] >= *thresh && ! prefac) {
				if (nfail == 0 && nerrs == 0) {
				    aladhd_(nout, path);
				}
				if (prefac) {
				    io___63.ciunit = *nout;
				    s_wsfe(&io___63);
				    do_fio(&c__1, "DGESVX", (ftnlen)6);
				    do_fio(&c__1, fact, (ftnlen)1);
				    do_fio(&c__1, trans, (ftnlen)1);
				    do_fio(&c__1, (char *)&n, (ftnlen)sizeof(
					    integer));
				    do_fio(&c__1, equed, (ftnlen)1);
				    do_fio(&c__1, (char *)&imat, (ftnlen)
					    sizeof(integer));
				    do_fio(&c__1, (char *)&c__1, (ftnlen)
					    sizeof(integer));
				    do_fio(&c__1, (char *)&result[0], (ftnlen)
					    sizeof(doublereal));
				    e_wsfe();
				} else {
				    io___64.ciunit = *nout;
				    s_wsfe(&io___64);
				    do_fio(&c__1, "DGESVX", (ftnlen)6);
				    do_fio(&c__1, fact, (ftnlen)1);
				    do_fio(&c__1, trans, (ftnlen)1);
				    do_fio(&c__1, (char *)&n, (ftnlen)sizeof(
					    integer));
				    do_fio(&c__1, (char *)&imat, (ftnlen)
					    sizeof(integer));
				    do_fio(&c__1, (char *)&c__1, (ftnlen)
					    sizeof(integer));
				    do_fio(&c__1, (char *)&result[0], (ftnlen)
					    sizeof(doublereal));
				    e_wsfe();
				}
				++nfail;
				++nrun;
			    }
			    if (result[5] >= *thresh) {
				if (nfail == 0 && nerrs == 0) {
				    aladhd_(nout, path);
				}
				if (prefac) {
				    io___65.ciunit = *nout;
				    s_wsfe(&io___65);
				    do_fio(&c__1, "DGESVX", (ftnlen)6);
				    do_fio(&c__1, fact, (ftnlen)1);
				    do_fio(&c__1, trans, (ftnlen)1);
				    do_fio(&c__1, (char *)&n, (ftnlen)sizeof(
					    integer));
				    do_fio(&c__1, equed, (ftnlen)1);
				    do_fio(&c__1, (char *)&imat, (ftnlen)
					    sizeof(integer));
				    do_fio(&c__1, (char *)&c__6, (ftnlen)
					    sizeof(integer));
				    do_fio(&c__1, (char *)&result[5], (ftnlen)
					    sizeof(doublereal));
				    e_wsfe();
				} else {
				    io___66.ciunit = *nout;
				    s_wsfe(&io___66);
				    do_fio(&c__1, "DGESVX", (ftnlen)6);
				    do_fio(&c__1, fact, (ftnlen)1);
				    do_fio(&c__1, trans, (ftnlen)1);
				    do_fio(&c__1, (char *)&n, (ftnlen)sizeof(
					    integer));
				    do_fio(&c__1, (char *)&imat, (ftnlen)
					    sizeof(integer));
				    do_fio(&c__1, (char *)&c__6, (ftnlen)
					    sizeof(integer));
				    do_fio(&c__1, (char *)&result[5], (ftnlen)
					    sizeof(doublereal));
				    e_wsfe();
				}
				++nfail;
				++nrun;
			    }
			    if (result[6] >= *thresh) {
				if (nfail == 0 && nerrs == 0) {
				    aladhd_(nout, path);
				}
				if (prefac) {
				    io___67.ciunit = *nout;
				    s_wsfe(&io___67);
				    do_fio(&c__1, "DGESVX", (ftnlen)6);
				    do_fio(&c__1, fact, (ftnlen)1);
				    do_fio(&c__1, trans, (ftnlen)1);
				    do_fio(&c__1, (char *)&n, (ftnlen)sizeof(
					    integer));
				    do_fio(&c__1, equed, (ftnlen)1);
				    do_fio(&c__1, (char *)&imat, (ftnlen)
					    sizeof(integer));
				    do_fio(&c__1, (char *)&c__7, (ftnlen)
					    sizeof(integer));
				    do_fio(&c__1, (char *)&result[6], (ftnlen)
					    sizeof(doublereal));
				    e_wsfe();
				} else {
				    io___68.ciunit = *nout;
				    s_wsfe(&io___68);
				    do_fio(&c__1, "DGESVX", (ftnlen)6);
				    do_fio(&c__1, fact, (ftnlen)1);
				    do_fio(&c__1, trans, (ftnlen)1);
				    do_fio(&c__1, (char *)&n, (ftnlen)sizeof(
					    integer));
				    do_fio(&c__1, (char *)&imat, (ftnlen)
					    sizeof(integer));
				    do_fio(&c__1, (char *)&c__7, (ftnlen)
					    sizeof(integer));
				    do_fio(&c__1, (char *)&result[6], (ftnlen)
					    sizeof(doublereal));
				    e_wsfe();
				}
				++nfail;
				++nrun;
			    }

			}

/* L50: */
		    }
L60:
		    ;
		}
/* L70: */
	    }
L80:
	    ;
	}
/* L90: */
    }

/*     Print a summary of the results. */

    alasvm_(path, nout, &nfail, &nrun, &nerrs);

    return 0;

/*     End of DDRVGE */

} /* ddrvge_ */