#include "blaswrap.h"
/*  -- translated by f2c (version 19990503).
   You must link the resulting object file with the libraries:
	-lf2c -lm   (in that order)
*/

#include "f2c.h"

/* Common Block Declarations */

struct {
    integer infot, iounit;
    logical ok, lerr;
} infoc_;

#define infoc_1 infoc_

struct {
    char srnamt[6];
} srnamc_;

#define srnamc_1 srnamc_

/* Table of constant values */

static doublereal c_b11 = 0.;
static doublereal c_b16 = 1.;
static integer c__1 = 1;

/* Subroutine */ int dchkqp_(logical *dotype, integer *nm, integer *mval, 
	integer *nn, integer *nval, doublereal *thresh, logical *tsterr, 
	doublereal *a, doublereal *copya, doublereal *s, doublereal *copys, 
	doublereal *tau, doublereal *work, integer *iwork, integer *nout)
{
    /* Initialized data */

    static integer iseedy[4] = { 1988,1989,1990,1991 };

    /* Format strings */
    static char fmt_9999[] = "(\002 M =\002,i5,\002, N =\002,i5,\002, type"
	    " \002,i2,\002, test \002,i2,\002, ratio =\002,g12.5)";

    /* System generated locals */
    integer i__1, i__2, i__3, i__4;
    doublereal d__1;

    /* Builtin functions   
       Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen);
    integer s_wsfe(cilist *), do_fio(integer *, char *, ftnlen), e_wsfe(void);

    /* Local variables */
    static integer mode, info;
    static char path[3];
    static integer ilow, nrun, i__;
    extern /* Subroutine */ int alahd_(integer *, char *);
    static integer k, m, n, ihigh, nfail, iseed[4], imode;
    extern doublereal dqpt01_(integer *, integer *, integer *, doublereal *, 
	    doublereal *, integer *, doublereal *, integer *, doublereal *, 
	    integer *), dqrt11_(integer *, integer *, doublereal *, integer *,
	     doublereal *, doublereal *, integer *), dqrt12_(integer *, 
	    integer *, doublereal *, integer *, doublereal *, doublereal *, 
	    integer *);
    static integer mnmin, istep, nerrs, lwork, im, in;
    extern doublereal dlamch_(char *);
    extern /* Subroutine */ int dlaord_(char *, integer *, doublereal *, 
	    integer *), dgeqpf_(integer *, integer *, doublereal *, 
	    integer *, integer *, doublereal *, doublereal *, integer *), 
	    dlacpy_(char *, integer *, integer *, doublereal *, integer *, 
	    doublereal *, integer *), dlaset_(char *, integer *, 
	    integer *, doublereal *, doublereal *, doublereal *, integer *), alasum_(char *, integer *, integer *, integer *, integer 
	    *), dlatms_(integer *, integer *, char *, integer *, char 
	    *, doublereal *, integer *, doublereal *, doublereal *, integer *,
	     integer *, char *, doublereal *, integer *, doublereal *, 
	    integer *), derrqp_(char *, integer *);
    static doublereal result[3];
    static integer lda;
    static doublereal eps;

    /* Fortran I/O blocks */
    static cilist io___24 = { 0, 0, 0, fmt_9999, 0 };



/*  -- LAPACK test routine (version 3.0) --   
       Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,   
       Courant Institute, Argonne National Lab, and Rice University   
       September 30, 1994   


    Purpose   
    =======   

    DCHKQP tests DGEQPF.   

    Arguments   
    =========   

    DOTYPE  (input) LOGICAL array, dimension (NTYPES)   
            The matrix types to be used for testing.  Matrices of type j   
            (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) =   
            .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used.   

    NM      (input) INTEGER   
            The number of values of M contained in the vector MVAL.   

    MVAL    (input) INTEGER array, dimension (NM)   
            The values of the matrix row dimension M.   

    NN      (input) INTEGER   
            The number of values of N contained in the vector NVAL.   

    NVAL    (input) INTEGER array, dimension (NN)   
            The values of the matrix column dimension N.   

    THRESH  (input) DOUBLE PRECISION   
            The threshold value for the test ratios.  A result is   
            included in the output file if RESULT >= THRESH.  To have   
            every test ratio printed, use THRESH = 0.   

    TSTERR  (input) LOGICAL   
            Flag that indicates whether error exits are to be tested.   

    A       (workspace) DOUBLE PRECISION array, dimension (MMAX*NMAX)   
            where MMAX is the maximum value of M in MVAL and NMAX is the   
            maximum value of N in NVAL.   

    COPYA   (workspace) DOUBLE PRECISION array, dimension (MMAX*NMAX)   

    S       (workspace) DOUBLE PRECISION array, dimension   
                        (min(MMAX,NMAX))   

    COPYS   (workspace) DOUBLE PRECISION array, dimension   
                        (min(MMAX,NMAX))   

    TAU     (workspace) DOUBLE PRECISION array, dimension (MMAX)   

    WORK    (workspace) DOUBLE PRECISION array, dimension   
                        (MMAX*NMAX + 4*NMAX + MMAX)   

    IWORK   (workspace) INTEGER array, dimension (NMAX)   

    NOUT    (input) INTEGER   
            The unit number for output.   

    =====================================================================   

       Parameter adjustments */
    --iwork;
    --work;
    --tau;
    --copys;
    --s;
    --copya;
    --a;
    --nval;
    --mval;
    --dotype;

    /* Function Body   

       Initialize constants and the random number seed. */

    s_copy(path, "Double precision", (ftnlen)1, (ftnlen)16);
    s_copy(path + 1, "QP", (ftnlen)2, (ftnlen)2);
    nrun = 0;
    nfail = 0;
    nerrs = 0;
    for (i__ = 1; i__ <= 4; ++i__) {
	iseed[i__ - 1] = iseedy[i__ - 1];
/* L10: */
    }
    eps = dlamch_("Epsilon");

/*     Test the error exits */

    if (*tsterr) {
	derrqp_(path, nout);
    }
    infoc_1.infot = 0;

    i__1 = *nm;
    for (im = 1; im <= i__1; ++im) {

/*        Do for each value of M in MVAL. */

	m = mval[im];
	lda = max(1,m);

	i__2 = *nn;
	for (in = 1; in <= i__2; ++in) {

/*           Do for each value of N in NVAL. */

	    n = nval[in];
	    mnmin = min(m,n);
/* Computing MAX */
	    i__3 = 1, i__4 = m * max(m,n) + (mnmin << 2) + max(m,n);
	    lwork = max(i__3,i__4);

	    for (imode = 1; imode <= 6; ++imode) {
		if (! dotype[imode]) {
		    goto L60;
		}

/*              Do for each type of matrix   
                   1:  zero matrix   
                   2:  one small singular value   
                   3:  geometric distribution of singular values   
                   4:  first n/2 columns fixed   
                   5:  last n/2 columns fixed   
                   6:  every second column fixed */

		mode = imode;
		if (imode > 3) {
		    mode = 1;
		}

/*              Generate test matrix of size m by n using   
                singular value distribution indicated by `mode'. */

		i__3 = n;
		for (i__ = 1; i__ <= i__3; ++i__) {
		    iwork[i__] = 0;
/* L20: */
		}
		if (imode == 1) {
		    dlaset_("Full", &m, &n, &c_b11, &c_b11, &copya[1], &lda);
		    i__3 = mnmin;
		    for (i__ = 1; i__ <= i__3; ++i__) {
			copys[i__] = 0.;
/* L30: */
		    }
		} else {
		    d__1 = 1. / eps;
		    dlatms_(&m, &n, "Uniform", iseed, "Nonsymm", &copys[1], &
			    mode, &d__1, &c_b16, &m, &n, "No packing", &copya[
			    1], &lda, &work[1], &info);
		    if (imode >= 4) {
			if (imode == 4) {
			    ilow = 1;
			    istep = 1;
/* Computing MAX */
			    i__3 = 1, i__4 = n / 2;
			    ihigh = max(i__3,i__4);
			} else if (imode == 5) {
/* Computing MAX */
			    i__3 = 1, i__4 = n / 2;
			    ilow = max(i__3,i__4);
			    istep = 1;
			    ihigh = n;
			} else if (imode == 6) {
			    ilow = 1;
			    istep = 2;
			    ihigh = n;
			}
			i__3 = ihigh;
			i__4 = istep;
			for (i__ = ilow; i__4 < 0 ? i__ >= i__3 : i__ <= i__3;
				 i__ += i__4) {
			    iwork[i__] = 1;
/* L40: */
			}
		    }
		    dlaord_("Decreasing", &mnmin, &copys[1], &c__1);
		}

/*              Save A and its singular values */

		dlacpy_("All", &m, &n, &copya[1], &lda, &a[1], &lda);

/*              Compute the QR factorization with pivoting of A */

		s_copy(srnamc_1.srnamt, "DGEQPF", (ftnlen)6, (ftnlen)6);
		dgeqpf_(&m, &n, &a[1], &lda, &iwork[1], &tau[1], &work[1], &
			info);

/*              Compute norm(svd(a) - svd(r)) */

		result[0] = dqrt12_(&m, &n, &a[1], &lda, &copys[1], &work[1], 
			&lwork);

/*              Compute norm( A*P - Q*R ) */

		result[1] = dqpt01_(&m, &n, &mnmin, &copya[1], &a[1], &lda, &
			tau[1], &iwork[1], &work[1], &lwork);

/*              Compute Q'*Q */

		result[2] = dqrt11_(&m, &mnmin, &a[1], &lda, &tau[1], &work[1]
			, &lwork);

/*              Print information about the tests that did not pass   
                the threshold. */

		for (k = 1; k <= 3; ++k) {
		    if (result[k - 1] >= *thresh) {
			if (nfail == 0 && nerrs == 0) {
			    alahd_(nout, path);
			}
			io___24.ciunit = *nout;
			s_wsfe(&io___24);
			do_fio(&c__1, (char *)&m, (ftnlen)sizeof(integer));
			do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
			do_fio(&c__1, (char *)&imode, (ftnlen)sizeof(integer))
				;
			do_fio(&c__1, (char *)&k, (ftnlen)sizeof(integer));
			do_fio(&c__1, (char *)&result[k - 1], (ftnlen)sizeof(
				doublereal));
			e_wsfe();
			++nfail;
		    }
/* L50: */
		}
		nrun += 3;
L60:
		;
	    }
/* L70: */
	}
/* L80: */
    }

/*     Print a summary of the results. */

    alasum_(path, nout, &nfail, &nrun, &nerrs);


/*     End of DCHKQP */

    return 0;
} /* dchkqp_ */