#include "blaswrap.h"
/*  -- translated by f2c (version 19990503).
   You must link the resulting object file with the libraries:
	-lf2c -lm   (in that order)
*/

#include "f2c.h"

/* Table of constant values */

static integer c__1 = 1;
static integer c_n1 = -1;
static integer c__0 = 0;
static integer c__4 = 4;
static real c_b36 = 0.f;
static integer c__2 = 2;
static real c_b42 = 1.f;
static integer c__3 = 3;
static logical c_true = TRUE_;
static logical c_false = FALSE_;

/* Subroutine */ int sdrvgg_(integer *nsizes, integer *nn, integer *ntypes, 
	logical *dotype, integer *iseed, real *thresh, real *thrshn, integer *
	nounit, real *a, integer *lda, real *b, real *s, real *t, real *s2, 
	real *t2, real *q, integer *ldq, real *z__, real *alphr1, real *
	alphi1, real *beta1, real *alphr2, real *alphi2, real *beta2, real *
	vl, real *vr, real *work, integer *lwork, real *result, integer *info)
{
    /* Initialized data */

    static integer kclass[26] = { 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,
	    2,2,2,3 };
    static integer kbmagn[26] = { 1,1,1,1,1,1,1,1,3,2,3,2,2,3,1,1,1,1,1,1,1,3,
	    2,3,2,1 };
    static integer ktrian[26] = { 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,
	    1,1,1,1 };
    static integer iasign[26] = { 0,0,0,0,0,0,2,0,2,2,0,0,2,2,2,0,2,0,0,0,2,2,
	    2,2,2,0 };
    static integer ibsign[26] = { 0,0,0,0,0,0,0,2,0,0,2,2,0,0,2,0,2,0,0,0,0,0,
	    0,0,0,0 };
    static integer kz1[6] = { 0,1,2,1,3,3 };
    static integer kz2[6] = { 0,0,1,2,1,1 };
    static integer kadd[6] = { 0,0,0,0,3,2 };
    static integer katype[26] = { 0,1,0,1,2,3,4,1,4,4,1,1,4,4,4,2,4,5,8,7,9,4,
	    4,4,4,0 };
    static integer kbtype[26] = { 0,0,1,1,2,-3,1,4,1,1,4,4,1,1,-4,2,-4,8,8,8,
	    8,8,8,8,8,0 };
    static integer kazero[26] = { 1,1,1,1,1,1,2,1,2,2,1,1,2,2,3,1,3,5,5,5,5,3,
	    3,3,3,1 };
    static integer kbzero[26] = { 1,1,1,1,1,1,1,2,1,1,2,2,1,1,4,1,4,6,6,6,6,4,
	    4,4,4,1 };
    static integer kamagn[26] = { 1,1,1,1,1,1,1,1,2,3,2,3,2,3,1,1,1,1,1,1,1,2,
	    3,3,2,1 };

    /* Format strings */
    static char fmt_9999[] = "(\002 SDRVGG: \002,a,\002 returned INFO=\002,i"
	    "6,\002.\002,/9x,\002N=\002,i6,\002, JTYPE=\002,i6,\002, ISEED="
	    "(\002,3(i5,\002,\002),i5,\002)\002)";
    static char fmt_9997[] = "(\002 SDRVGG: SGET53 returned INFO=\002,i1,"
	    "\002 for eigenvalue \002,i6,\002.\002,/9x,\002N=\002,i6,\002, JT"
	    "YPE=\002,i6,\002, ISEED=(\002,3(i5,\002,\002),i5,\002)\002)";
    static char fmt_9996[] = "(\002 SDRVGG: S not in Schur form at eigenvalu"
	    "e \002,i6,\002.\002,/9x,\002N=\002,i6,\002, JTYPE=\002,i6,\002, "
	    "ISEED=(\002,3(i5,\002,\002),i5,\002)\002)";
    static char fmt_9998[] = "(\002 SDRVGG: \002,a,\002 Eigenvectors from"
	    " \002,a,\002 incorrectly \002,\002normalized.\002,/\002 Bits of "
	    "error=\002,0p,g10.3,\002,\002,9x,\002N=\002,i6,\002, JTYPE=\002,"
	    "i6,\002, ISEED=(\002,3(i5,\002,\002),i5,\002)\002)";
    static char fmt_9995[] = "(/1x,a3,\002 -- Real Generalized eigenvalue pr"
	    "oblem driver\002)";
    static char fmt_9994[] = "(\002 Matrix types (see SDRVGG for details):"
	    " \002)";
    static char fmt_9993[] = "(\002 Special Matrices:\002,23x,\002(J'=transp"
	    "osed Jordan block)\002,/\002   1=(0,0)  2=(I,0)  3=(0,I)  4=(I,I"
	    ")  5=(J',J')  \002,\0026=(diag(J',I), diag(I,J'))\002,/\002 Diag"
	    "onal Matrices:  ( \002,\002D=diag(0,1,2,...) )\002,/\002   7=(D,"
	    "I)   9=(large*D, small*I\002,\002)  11=(large*I, small*D)  13=(l"
	    "arge*D, large*I)\002,/\002   8=(I,D)  10=(small*D, large*I)  12="
	    "(small*I, large*D) \002,\002 14=(small*D, small*I)\002,/\002  15"
	    "=(D, reversed D)\002)";
    static char fmt_9992[] = "(\002 Matrices Rotated by Random \002,a,\002 M"
	    "atrices U, V:\002,/\002  16=Transposed Jordan Blocks            "
	    " 19=geometric \002,\002alpha, beta=0,1\002,/\002  17=arithm. alp"
	    "ha&beta             \002,\002      20=arithmetic alpha, beta=0,"
	    "1\002,/\002  18=clustered \002,\002alpha, beta=0,1            21"
	    "=random alpha, beta=0,1\002,/\002 Large & Small Matrices:\002,"
	    "/\002  22=(large, small)   \002,\00223=(small,large)    24=(smal"
	    "l,small)    25=(large,large)\002,/\002  26=random O(1) matrices"
	    ".\002)";
    static char fmt_9991[] = "(/\002 Tests performed:  (S is Schur, T is tri"
	    "angular, \002,\002Q and Z are \002,a,\002,\002,/20x,\002l and r "
	    "are the appropriate left and right\002,/19x,\002eigenvectors, re"
	    "sp., a is alpha, b is beta, and\002,/19x,a,\002 means \002,a,"
	    "\002.)\002,/\002 1 = | A - Q S Z\002,a,\002 | / ( |A| n ulp )   "
	    "   2 = | B - Q T Z\002,a,\002 | / ( |B| n ulp )\002,/\002 3 = | "
	    "I - QQ\002,a,\002 | / ( n ulp )             4 = | I - ZZ\002,a"
	    ",\002 | / ( n ulp )\002,/\002 5 = difference between (alpha,beta"
	    ") and diagonals of\002,\002 (S,T)\002,/\002 6 = max | ( b A - a "
	    "B )\002,a,\002 l | / const.   7 = max | ( b A - a B ) r | / cons"
	    "t.\002,/1x)";
    static char fmt_9990[] = "(\002 Matrix order=\002,i5,\002, type=\002,i2"
	    ",\002, seed=\002,4(i4,\002,\002),\002 result \002,i3,\002 is\002"
	    ",0p,f8.2)";
    static char fmt_9989[] = "(\002 Matrix order=\002,i5,\002, type=\002,i2"
	    ",\002, seed=\002,4(i4,\002,\002),\002 result \002,i3,\002 is\002"
	    ",1p,e10.3)";

    /* System generated locals */
    integer a_dim1, a_offset, b_dim1, b_offset, q_dim1, q_offset, s_dim1, 
	    s_offset, s2_dim1, s2_offset, t_dim1, t_offset, t2_dim1, 
	    t2_offset, vl_dim1, vl_offset, vr_dim1, vr_offset, z_dim1, 
	    z_offset, i__1, i__2, i__3, i__4;
    real r__1, r__2, r__3, r__4, r__5, r__6, r__7, r__8, r__9, r__10;

    /* Builtin functions */
    double r_sign(real *, real *);
    integer s_wsfe(cilist *), do_fio(integer *, char *, ftnlen), e_wsfe(void);

    /* Local variables */
    static integer iadd, nmax;
    static real temp1, temp2;
    static integer j, n;
    static logical badnn;
    static real dumma[4];
    static integer iinfo;
    static real rmagn[4];
    extern /* Subroutine */ int sgegs_(char *, char *, integer *, real *, 
	    integer *, real *, integer *, real *, real *, real *, real *, 
	    integer *, real *, integer *, real *, integer *, integer *), sget51_(integer *, integer *, real *, integer *, 
	    real *, integer *, real *, integer *, real *, integer *, real *, 
	    real *), sget52_(logical *, integer *, real *, integer *, real *, 
	    integer *, real *, integer *, real *, real *, real *, real *, 
	    real *), sgegv_(char *, char *, integer *, real *, integer *, 
	    real *, integer *, real *, real *, real *, real *, integer *, 
	    real *, integer *, real *, integer *, integer *), 
	    sget53_(real *, integer *, real *, integer *, real *, real *, 
	    real *, real *, integer *);
    static integer nmats, jsize, nerrs, i1, jtype, ntest, n1;
    extern /* Subroutine */ int slatm4_(integer *, integer *, integer *, 
	    integer *, integer *, real *, real *, real *, integer *, integer *
	    , real *, integer *);
    static logical ilabad;
    static integer jc, nb;
    extern /* Subroutine */ int sorm2r_(char *, char *, integer *, integer *, 
	    integer *, real *, integer *, real *, real *, integer *, real *, 
	    integer *), slabad_(real *, real *);
    static integer in, jr, ns;
    extern doublereal slamch_(char *);
    static real safmin;
    static integer ioldsd[4];
    static real safmax;
    extern integer ilaenv_(integer *, char *, char *, integer *, integer *, 
	    integer *, integer *, ftnlen, ftnlen);
    extern /* Subroutine */ int slarfg_(integer *, real *, real *, integer *, 
	    real *);
    extern doublereal slarnd_(integer *, integer *);
    extern /* Subroutine */ int alasvm_(char *, integer *, integer *, integer 
	    *, integer *), xerbla_(char *, integer *), 
	    slacpy_(char *, integer *, integer *, real *, integer *, real *, 
	    integer *), slaset_(char *, integer *, integer *, real *, 
	    real *, real *, integer *);
    static real ulpinv;
    static integer lwkopt, mtypes, ntestt, nbz;
    static real ulp;

    /* Fortran I/O blocks */
    static cilist io___42 = { 0, 0, 0, fmt_9999, 0 };
    static cilist io___43 = { 0, 0, 0, fmt_9999, 0 };
    static cilist io___47 = { 0, 0, 0, fmt_9997, 0 };
    static cilist io___48 = { 0, 0, 0, fmt_9996, 0 };
    static cilist io___49 = { 0, 0, 0, fmt_9999, 0 };
    static cilist io___51 = { 0, 0, 0, fmt_9998, 0 };
    static cilist io___52 = { 0, 0, 0, fmt_9998, 0 };
    static cilist io___53 = { 0, 0, 0, fmt_9996, 0 };
    static cilist io___54 = { 0, 0, 0, fmt_9995, 0 };
    static cilist io___55 = { 0, 0, 0, fmt_9994, 0 };
    static cilist io___56 = { 0, 0, 0, fmt_9993, 0 };
    static cilist io___57 = { 0, 0, 0, fmt_9992, 0 };
    static cilist io___58 = { 0, 0, 0, fmt_9991, 0 };
    static cilist io___59 = { 0, 0, 0, fmt_9990, 0 };
    static cilist io___60 = { 0, 0, 0, fmt_9989, 0 };



#define a_ref(a_1,a_2) a[(a_2)*a_dim1 + a_1]
#define b_ref(a_1,a_2) b[(a_2)*b_dim1 + a_1]
#define q_ref(a_1,a_2) q[(a_2)*q_dim1 + a_1]
#define s_ref(a_1,a_2) s[(a_2)*s_dim1 + a_1]
#define t_ref(a_1,a_2) t[(a_2)*t_dim1 + a_1]
#define z___ref(a_1,a_2) z__[(a_2)*z_dim1 + a_1]


/*  -- LAPACK test routine (version 3.0) --   
       Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,   
       Courant Institute, Argonne National Lab, and Rice University   
       June 30, 1999   


    Purpose   
    =======   

    SDRVGG  checks the nonsymmetric generalized eigenvalue driver   
    routines.   
                                  T          T        T   
    SGEGS factors A and B as Q S Z  and Q T Z , where   means   
    transpose, T is upper triangular, S is in generalized Schur form   
    (block upper triangular, with 1x1 and 2x2 blocks on the diagonal,   
    the 2x2 blocks corresponding to complex conjugate pairs of   
    generalized eigenvalues), and Q and Z are orthogonal.  It also   
    computes the generalized eigenvalues (alpha(1),beta(1)), ...,   
    (alpha(n),beta(n)), where alpha(j)=S(j,j) and beta(j)=P(j,j) --   
    thus, w(j) = alpha(j)/beta(j) is a root of the generalized   
    eigenvalue problem   

        det( A - w(j) B ) = 0   

    and m(j) = beta(j)/alpha(j) is a root of the essentially equivalent   
    problem   

        det( m(j) A - B ) = 0   

    SGEGV computes the generalized eigenvalues (alpha(1),beta(1)), ...,   
    (alpha(n),beta(n)), the matrix L whose columns contain the   
    generalized left eigenvectors l, and the matrix R whose columns   
    contain the generalized right eigenvectors r for the pair (A,B).   

    When SDRVGG is called, a number of matrix "sizes" ("n's") and a   
    number of matrix "types" are specified.  For each size ("n")   
    and each type of matrix, one matrix will be generated and used   
    to test the nonsymmetric eigenroutines.  For each matrix, 7   
    tests will be performed and compared with the threshhold THRESH:   

    Results from SGEGS:   

                     T   
    (1)   | A - Q S Z  | / ( |A| n ulp )   

                     T   
    (2)   | B - Q T Z  | / ( |B| n ulp )   

                  T   
    (3)   | I - QQ  | / ( n ulp )   

                  T   
    (4)   | I - ZZ  | / ( n ulp )   

    (5)   maximum over j of D(j)  where:   

    if alpha(j) is real:   
                        |alpha(j) - S(j,j)|        |beta(j) - T(j,j)|   
              D(j) = ------------------------ + -----------------------   
                     max(|alpha(j)|,|S(j,j)|)   max(|beta(j)|,|T(j,j)|)   

    if alpha(j) is complex:   
                                    | det( s S - w T ) |   
              D(j) = ---------------------------------------------------   
                     ulp max( s norm(S), |w| norm(T) )*norm( s S - w T )   

              and S and T are here the 2 x 2 diagonal blocks of S and T   
              corresponding to the j-th eigenvalue.   

    Results from SGEGV:   

    (6)   max over all left eigenvalue/-vector pairs (beta/alpha,l) of   

       | l**H * (beta A - alpha B) | / ( ulp max( |beta A|, |alpha B| ) )   

          where l**H is the conjugate tranpose of l.   

    (7)   max over all right eigenvalue/-vector pairs (beta/alpha,r) of   

          | (beta A - alpha B) r | / ( ulp max( |beta A|, |alpha B| ) )   

    Test Matrices   
    ---- --------   

    The sizes of the test matrices are specified by an array   
    NN(1:NSIZES); the value of each element NN(j) specifies one size.   
    The "types" are specified by a logical array DOTYPE( 1:NTYPES ); if   
    DOTYPE(j) is .TRUE., then matrix type "j" will be generated.   
    Currently, the list of possible types is:   

    (1)  ( 0, 0 )         (a pair of zero matrices)   

    (2)  ( I, 0 )         (an identity and a zero matrix)   

    (3)  ( 0, I )         (an identity and a zero matrix)   

    (4)  ( I, I )         (a pair of identity matrices)   

            t   t   
    (5)  ( J , J  )       (a pair of transposed Jordan blocks)   

                                        t                ( I   0  )   
    (6)  ( X, Y )         where  X = ( J   0  )  and Y = (      t )   
                                     ( 0   I  )          ( 0   J  )   
                          and I is a k x k identity and J a (k+1)x(k+1)   
                          Jordan block; k=(N-1)/2   

    (7)  ( D, I )         where D is diag( 0, 1,..., N-1 ) (a diagonal   
                          matrix with those diagonal entries.)   
    (8)  ( I, D )   

    (9)  ( big*D, small*I ) where "big" is near overflow and small=1/big   

    (10) ( small*D, big*I )   

    (11) ( big*I, small*D )   

    (12) ( small*I, big*D )   

    (13) ( big*D, big*I )   

    (14) ( small*D, small*I )   

    (15) ( D1, D2 )        where D1 is diag( 0, 0, 1, ..., N-3, 0 ) and   
                           D2 is diag( 0, N-3, N-4,..., 1, 0, 0 )   
              t   t   
    (16) Q ( J , J ) Z     where Q and Z are random orthogonal matrices.   

    (17) Q ( T1, T2 ) Z    where T1 and T2 are upper triangular matrices   
                           with random O(1) entries above the diagonal   
                           and diagonal entries diag(T1) =   
                           ( 0, 0, 1, ..., N-3, 0 ) and diag(T2) =   
                           ( 0, N-3, N-4,..., 1, 0, 0 )   

    (18) Q ( T1, T2 ) Z    diag(T1) = ( 0, 0, 1, 1, s, ..., s, 0 )   
                           diag(T2) = ( 0, 1, 0, 1,..., 1, 0 )   
                           s = machine precision.   

    (19) Q ( T1, T2 ) Z    diag(T1)=( 0,0,1,1, 1-d, ..., 1-(N-5)*d=s, 0 )   
                           diag(T2) = ( 0, 1, 0, 1, ..., 1, 0 )   

                                                           N-5   
    (20) Q ( T1, T2 ) Z    diag(T1)=( 0, 0, 1, 1, a, ..., a   =s, 0 )   
                           diag(T2) = ( 0, 1, 0, 1, ..., 1, 0, 0 )   

    (21) Q ( T1, T2 ) Z    diag(T1)=( 0, 0, 1, r1, r2, ..., r(N-4), 0 )   
                           diag(T2) = ( 0, 1, 0, 1, ..., 1, 0, 0 )   
                           where r1,..., r(N-4) are random.   

    (22) Q ( big*T1, small*T2 ) Z    diag(T1) = ( 0, 0, 1, ..., N-3, 0 )   
                                     diag(T2) = ( 0, 1, ..., 1, 0, 0 )   

    (23) Q ( small*T1, big*T2 ) Z    diag(T1) = ( 0, 0, 1, ..., N-3, 0 )   
                                     diag(T2) = ( 0, 1, ..., 1, 0, 0 )   

    (24) Q ( small*T1, small*T2 ) Z  diag(T1) = ( 0, 0, 1, ..., N-3, 0 )   
                                     diag(T2) = ( 0, 1, ..., 1, 0, 0 )   

    (25) Q ( big*T1, big*T2 ) Z      diag(T1) = ( 0, 0, 1, ..., N-3, 0 )   
                                     diag(T2) = ( 0, 1, ..., 1, 0, 0 )   

    (26) Q ( T1, T2 ) Z     where T1 and T2 are random upper-triangular   
                            matrices.   

    Arguments   
    =========   

    NSIZES  (input) INTEGER   
            The number of sizes of matrices to use.  If it is zero,   
            SDRVGG does nothing.  It must be at least zero.   

    NN      (input) INTEGER array, dimension (NSIZES)   
            An array containing the sizes to be used for the matrices.   
            Zero values will be skipped.  The values must be at least   
            zero.   

    NTYPES  (input) INTEGER   
            The number of elements in DOTYPE.   If it is zero, SDRVGG   
            does nothing.  It must be at least zero.  If it is MAXTYP+1   
            and NSIZES is 1, then an additional type, MAXTYP+1 is   
            defined, which is to use whatever matrix is in A.  This   
            is only useful if DOTYPE(1:MAXTYP) is .FALSE. and   
            DOTYPE(MAXTYP+1) is .TRUE. .   

    DOTYPE  (input) LOGICAL array, dimension (NTYPES)   
            If DOTYPE(j) is .TRUE., then for each size in NN a   
            matrix of that size and of type j will be generated.   
            If NTYPES is smaller than the maximum number of types   
            defined (PARAMETER MAXTYP), then types NTYPES+1 through   
            MAXTYP will not be generated.  If NTYPES is larger   
            than MAXTYP, DOTYPE(MAXTYP+1) through DOTYPE(NTYPES)   
            will be ignored.   

    ISEED   (input/output) INTEGER array, dimension (4)   
            On entry ISEED specifies the seed of the random number   
            generator. The array elements should be between 0 and 4095;   
            if not they will be reduced mod 4096.  Also, ISEED(4) must   
            be odd.  The random number generator uses a linear   
            congruential sequence limited to small integers, and so   
            should produce machine independent random numbers. The   
            values of ISEED are changed on exit, and can be used in the   
            next call to SDRVGG to continue the same random number   
            sequence.   

    THRESH  (input) REAL   
            A test will count as "failed" if the "error", computed as   
            described above, exceeds THRESH.  Note that the error is   
            scaled to be O(1), so THRESH should be a reasonably small   
            multiple of 1, e.g., 10 or 100.  In particular, it should   
            not depend on the precision (single vs. double) or the size   
            of the matrix.  It must be at least zero.   

    THRSHN  (input) REAL   
            Threshhold for reporting eigenvector normalization error.   
            If the normalization of any eigenvector differs from 1 by   
            more than THRSHN*ulp, then a special error message will be   
            printed.  (This is handled separately from the other tests,   
            since only a compiler or programming error should cause an   
            error message, at least if THRSHN is at least 5--10.)   

    NOUNIT  (input) INTEGER   
            The FORTRAN unit number for printing out error messages   
            (e.g., if a routine returns IINFO not equal to 0.)   

    A       (input/workspace) REAL array, dimension   
                              (LDA, max(NN))   
            Used to hold the original A matrix.  Used as input only   
            if NTYPES=MAXTYP+1, DOTYPE(1:MAXTYP)=.FALSE., and   
            DOTYPE(MAXTYP+1)=.TRUE.   

    LDA     (input) INTEGER   
            The leading dimension of A, B, S, T, S2, and T2.   
            It must be at least 1 and at least max( NN ).   

    B       (input/workspace) REAL array, dimension   
                              (LDA, max(NN))   
            Used to hold the original B matrix.  Used as input only   
            if NTYPES=MAXTYP+1, DOTYPE(1:MAXTYP)=.FALSE., and   
            DOTYPE(MAXTYP+1)=.TRUE.   

    S       (workspace) REAL array, dimension (LDA, max(NN))   
            The Schur form matrix computed from A by SGEGS.  On exit, S   
            contains the Schur form matrix corresponding to the matrix   
            in A.   

    T       (workspace) REAL array, dimension (LDA, max(NN))   
            The upper triangular matrix computed from B by SGEGS.   

    S2      (workspace) REAL array, dimension (LDA, max(NN))   
            The matrix computed from A by SGEGV.  This will be the   
            Schur form of some matrix related to A, but will not, in   
            general, be the same as S.   

    T2      (workspace) REAL array, dimension (LDA, max(NN))   
            The matrix computed from B by SGEGV.  This will be the   
            Schur form of some matrix related to B, but will not, in   
            general, be the same as T.   

    Q       (workspace) REAL array, dimension (LDQ, max(NN))   
            The (left) orthogonal matrix computed by SGEGS.   

    LDQ     (input) INTEGER   
            The leading dimension of Q, Z, VL, and VR.  It must   
            be at least 1 and at least max( NN ).   

    Z       (workspace) REAL array of   
                               dimension( LDQ, max(NN) )   
            The (right) orthogonal matrix computed by SGEGS.   

    ALPHR1  (workspace) REAL array, dimension (max(NN))   
    ALPHI1  (workspace) REAL array, dimension (max(NN))   
    BETA1   (workspace) REAL array, dimension (max(NN))   

            The generalized eigenvalues of (A,B) computed by SGEGS.   
            ( ALPHR1(k)+ALPHI1(k)*i ) / BETA1(k) is the k-th   
            generalized eigenvalue of the matrices in A and B.   

    ALPHR2  (workspace) REAL array, dimension (max(NN))   
    ALPHI2  (workspace) REAL array, dimension (max(NN))   
    BETA2   (workspace) REAL array, dimension (max(NN))   

            The generalized eigenvalues of (A,B) computed by SGEGV.   
            ( ALPHR2(k)+ALPHI2(k)*i ) / BETA2(k) is the k-th   
            generalized eigenvalue of the matrices in A and B.   

    VL      (workspace) REAL array, dimension (LDQ, max(NN))   
            The (block lower triangular) left eigenvector matrix for   
            the matrices in A and B.  (See STGEVC for the format.)   

    VR      (workspace) REAL array, dimension (LDQ, max(NN))   
            The (block upper triangular) right eigenvector matrix for   
            the matrices in A and B.  (See STGEVC for the format.)   

    WORK    (workspace) REAL array, dimension (LWORK)   

    LWORK   (input) INTEGER   
            The number of entries in WORK.  This must be at least   
            2*N + MAX( 6*N, N*(NB+1), (k+1)*(2*k+N+1) ), where   
            "k" is the sum of the blocksize and number-of-shifts for   
            SHGEQZ, and NB is the greatest of the blocksizes for   
            SGEQRF, SORMQR, and SORGQR.  (The blocksizes and the   
            number-of-shifts are retrieved through calls to ILAENV.)   

    RESULT  (output) REAL array, dimension (15)   
            The values computed by the tests described above.   
            The values are currently limited to 1/ulp, to avoid   
            overflow.   

    INFO    (output) INTEGER   
            = 0:  successful exit   
            < 0:  if INFO = -i, the i-th argument had an illegal value.   
            > 0:  A routine returned an error code.  INFO is the   
                  absolute value of the INFO value returned.   

    =====================================================================   

       Parameter adjustments */
    --nn;
    --dotype;
    --iseed;
    t2_dim1 = *lda;
    t2_offset = 1 + t2_dim1 * 1;
    t2 -= t2_offset;
    s2_dim1 = *lda;
    s2_offset = 1 + s2_dim1 * 1;
    s2 -= s2_offset;
    t_dim1 = *lda;
    t_offset = 1 + t_dim1 * 1;
    t -= t_offset;
    s_dim1 = *lda;
    s_offset = 1 + s_dim1 * 1;
    s -= s_offset;
    b_dim1 = *lda;
    b_offset = 1 + b_dim1 * 1;
    b -= b_offset;
    a_dim1 = *lda;
    a_offset = 1 + a_dim1 * 1;
    a -= a_offset;
    vr_dim1 = *ldq;
    vr_offset = 1 + vr_dim1 * 1;
    vr -= vr_offset;
    vl_dim1 = *ldq;
    vl_offset = 1 + vl_dim1 * 1;
    vl -= vl_offset;
    z_dim1 = *ldq;
    z_offset = 1 + z_dim1 * 1;
    z__ -= z_offset;
    q_dim1 = *ldq;
    q_offset = 1 + q_dim1 * 1;
    q -= q_offset;
    --alphr1;
    --alphi1;
    --beta1;
    --alphr2;
    --alphi2;
    --beta2;
    --work;
    --result;

    /* Function Body   

       Check for errors */

    *info = 0;

    badnn = FALSE_;
    nmax = 1;
    i__1 = *nsizes;
    for (j = 1; j <= i__1; ++j) {
/* Computing MAX */
	i__2 = nmax, i__3 = nn[j];
	nmax = max(i__2,i__3);
	if (nn[j] < 0) {
	    badnn = TRUE_;
	}
/* L10: */
    }

/*     Maximum blocksize and shift -- we assume that blocksize and number   
       of shifts are monotone increasing functions of N.   

   Computing MAX */
    i__1 = 1, i__2 = ilaenv_(&c__1, "SGEQRF", " ", &nmax, &nmax, &c_n1, &c_n1,
	     (ftnlen)6, (ftnlen)1), i__1 = max(i__1,i__2), i__2 = ilaenv_(&
	    c__1, "SORMQR", "LT", &nmax, &nmax, &nmax, &c_n1, (ftnlen)6, (
	    ftnlen)2), i__1 = max(i__1,i__2), i__2 = ilaenv_(&c__1, "SORGQR", 
	    " ", &nmax, &nmax, &nmax, &c_n1, (ftnlen)6, (ftnlen)1);
    nb = max(i__1,i__2);
    nbz = ilaenv_(&c__1, "SHGEQZ", "SII", &nmax, &c__1, &nmax, &c__0, (ftnlen)
	    6, (ftnlen)3);
    ns = ilaenv_(&c__4, "SHGEQZ", "SII", &nmax, &c__1, &nmax, &c__0, (ftnlen)
	    6, (ftnlen)3);
    i1 = nbz + ns;
/* Computing MAX */
    i__1 = nmax * 6, i__2 = nmax * (nb + 1), i__1 = max(i__1,i__2), i__2 = ((
	    i1 << 1) + nmax + 1) * (i1 + 1);
    lwkopt = (nmax << 1) + max(i__1,i__2);

/*     Check for errors */

    if (*nsizes < 0) {
	*info = -1;
    } else if (badnn) {
	*info = -2;
    } else if (*ntypes < 0) {
	*info = -3;
    } else if (*thresh < 0.f) {
	*info = -6;
    } else if (*lda <= 1 || *lda < nmax) {
	*info = -10;
    } else if (*ldq <= 1 || *ldq < nmax) {
	*info = -19;
    } else if (lwkopt > *lwork) {
	*info = -30;
    }

    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("SDRVGG", &i__1);
	return 0;
    }

/*     Quick return if possible */

    if (*nsizes == 0 || *ntypes == 0) {
	return 0;
    }

    safmin = slamch_("Safe minimum");
    ulp = slamch_("Epsilon") * slamch_("Base");
    safmin /= ulp;
    safmax = 1.f / safmin;
    slabad_(&safmin, &safmax);
    ulpinv = 1.f / ulp;

/*     The values RMAGN(2:3) depend on N, see below. */

    rmagn[0] = 0.f;
    rmagn[1] = 1.f;

/*     Loop over sizes, types */

    ntestt = 0;
    nerrs = 0;
    nmats = 0;

    i__1 = *nsizes;
    for (jsize = 1; jsize <= i__1; ++jsize) {
	n = nn[jsize];
	n1 = max(1,n);
	rmagn[2] = safmax * ulp / (real) n1;
	rmagn[3] = safmin * ulpinv * n1;

	if (*nsizes != 1) {
	    mtypes = min(26,*ntypes);
	} else {
	    mtypes = min(27,*ntypes);
	}

	i__2 = mtypes;
	for (jtype = 1; jtype <= i__2; ++jtype) {
	    if (! dotype[jtype]) {
		goto L160;
	    }
	    ++nmats;
	    ntest = 0;

/*           Save ISEED in case of an error. */

	    for (j = 1; j <= 4; ++j) {
		ioldsd[j - 1] = iseed[j];
/* L20: */
	    }

/*           Initialize RESULT */

	    for (j = 1; j <= 15; ++j) {
		result[j] = 0.f;
/* L30: */
	    }

/*           Compute A and B   

             Description of control parameters:   

             KCLASS: =1 means w/o rotation, =2 means w/ rotation,   
                     =3 means random.   
             KATYPE: the "type" to be passed to SLATM4 for computing A.   
             KAZERO: the pattern of zeros on the diagonal for A:   
                     =1: ( xxx ), =2: (0, xxx ) =3: ( 0, 0, xxx, 0 ),   
                     =4: ( 0, xxx, 0, 0 ), =5: ( 0, 0, 1, xxx, 0 ),   
                     =6: ( 0, 1, 0, xxx, 0 ).  (xxx means a string of   
                     non-zero entries.)   
             KAMAGN: the magnitude of the matrix: =0: zero, =1: O(1),   
                     =2: large, =3: small.   
             IASIGN: 1 if the diagonal elements of A are to be   
                     multiplied by a random magnitude 1 number, =2 if   
                     randomly chosen diagonal blocks are to be rotated   
                     to form 2x2 blocks.   
             KBTYPE, KBZERO, KBMAGN, IBSIGN: the same, but for B.   
             KTRIAN: =0: don't fill in the upper triangle, =1: do.   
             KZ1, KZ2, KADD: used to implement KAZERO and KBZERO.   
             RMAGN: used to implement KAMAGN and KBMAGN. */

	    if (mtypes > 26) {
		goto L110;
	    }
	    iinfo = 0;
	    if (kclass[jtype - 1] < 3) {

/*              Generate A (w/o rotation) */

		if ((i__3 = katype[jtype - 1], abs(i__3)) == 3) {
		    in = ((n - 1) / 2 << 1) + 1;
		    if (in != n) {
			slaset_("Full", &n, &n, &c_b36, &c_b36, &a[a_offset], 
				lda);
		    }
		} else {
		    in = n;
		}
		slatm4_(&katype[jtype - 1], &in, &kz1[kazero[jtype - 1] - 1], 
			&kz2[kazero[jtype - 1] - 1], &iasign[jtype - 1], &
			rmagn[kamagn[jtype - 1]], &ulp, &rmagn[ktrian[jtype - 
			1] * kamagn[jtype - 1]], &c__2, &iseed[1], &a[
			a_offset], lda);
		iadd = kadd[kazero[jtype - 1] - 1];
		if (iadd > 0 && iadd <= n) {
		    a_ref(iadd, iadd) = 1.f;
		}

/*              Generate B (w/o rotation) */

		if ((i__3 = kbtype[jtype - 1], abs(i__3)) == 3) {
		    in = ((n - 1) / 2 << 1) + 1;
		    if (in != n) {
			slaset_("Full", &n, &n, &c_b36, &c_b36, &b[b_offset], 
				lda);
		    }
		} else {
		    in = n;
		}
		slatm4_(&kbtype[jtype - 1], &in, &kz1[kbzero[jtype - 1] - 1], 
			&kz2[kbzero[jtype - 1] - 1], &ibsign[jtype - 1], &
			rmagn[kbmagn[jtype - 1]], &c_b42, &rmagn[ktrian[jtype 
			- 1] * kbmagn[jtype - 1]], &c__2, &iseed[1], &b[
			b_offset], lda);
		iadd = kadd[kbzero[jtype - 1] - 1];
		if (iadd != 0 && iadd <= n) {
		    b_ref(iadd, iadd) = 1.f;
		}

		if (kclass[jtype - 1] == 2 && n > 0) {

/*                 Include rotations   

                   Generate Q, Z as Householder transformations times   
                   a diagonal matrix. */

		    i__3 = n - 1;
		    for (jc = 1; jc <= i__3; ++jc) {
			i__4 = n;
			for (jr = jc; jr <= i__4; ++jr) {
			    q_ref(jr, jc) = slarnd_(&c__3, &iseed[1]);
			    z___ref(jr, jc) = slarnd_(&c__3, &iseed[1]);
/* L40: */
			}
			i__4 = n + 1 - jc;
			slarfg_(&i__4, &q_ref(jc, jc), &q_ref(jc + 1, jc), &
				c__1, &work[jc]);
			work[(n << 1) + jc] = r_sign(&c_b42, &q_ref(jc, jc));
			q_ref(jc, jc) = 1.f;
			i__4 = n + 1 - jc;
			slarfg_(&i__4, &z___ref(jc, jc), &z___ref(jc + 1, jc),
				 &c__1, &work[n + jc]);
			work[n * 3 + jc] = r_sign(&c_b42, &z___ref(jc, jc));
			z___ref(jc, jc) = 1.f;
/* L50: */
		    }
		    q_ref(n, n) = 1.f;
		    work[n] = 0.f;
		    r__1 = slarnd_(&c__2, &iseed[1]);
		    work[n * 3] = r_sign(&c_b42, &r__1);
		    z___ref(n, n) = 1.f;
		    work[n * 2] = 0.f;
		    r__1 = slarnd_(&c__2, &iseed[1]);
		    work[n * 4] = r_sign(&c_b42, &r__1);

/*                 Apply the diagonal matrices */

		    i__3 = n;
		    for (jc = 1; jc <= i__3; ++jc) {
			i__4 = n;
			for (jr = 1; jr <= i__4; ++jr) {
			    a_ref(jr, jc) = work[(n << 1) + jr] * work[n * 3 
				    + jc] * a_ref(jr, jc);
			    b_ref(jr, jc) = work[(n << 1) + jr] * work[n * 3 
				    + jc] * b_ref(jr, jc);
/* L60: */
			}
/* L70: */
		    }
		    i__3 = n - 1;
		    sorm2r_("L", "N", &n, &n, &i__3, &q[q_offset], ldq, &work[
			    1], &a[a_offset], lda, &work[(n << 1) + 1], &
			    iinfo);
		    if (iinfo != 0) {
			goto L100;
		    }
		    i__3 = n - 1;
		    sorm2r_("R", "T", &n, &n, &i__3, &z__[z_offset], ldq, &
			    work[n + 1], &a[a_offset], lda, &work[(n << 1) + 
			    1], &iinfo);
		    if (iinfo != 0) {
			goto L100;
		    }
		    i__3 = n - 1;
		    sorm2r_("L", "N", &n, &n, &i__3, &q[q_offset], ldq, &work[
			    1], &b[b_offset], lda, &work[(n << 1) + 1], &
			    iinfo);
		    if (iinfo != 0) {
			goto L100;
		    }
		    i__3 = n - 1;
		    sorm2r_("R", "T", &n, &n, &i__3, &z__[z_offset], ldq, &
			    work[n + 1], &b[b_offset], lda, &work[(n << 1) + 
			    1], &iinfo);
		    if (iinfo != 0) {
			goto L100;
		    }
		}
	    } else {

/*              Random matrices */

		i__3 = n;
		for (jc = 1; jc <= i__3; ++jc) {
		    i__4 = n;
		    for (jr = 1; jr <= i__4; ++jr) {
			a_ref(jr, jc) = rmagn[kamagn[jtype - 1]] * slarnd_(&
				c__2, &iseed[1]);
			b_ref(jr, jc) = rmagn[kbmagn[jtype - 1]] * slarnd_(&
				c__2, &iseed[1]);
/* L80: */
		    }
/* L90: */
		}
	    }

L100:

	    if (iinfo != 0) {
		io___42.ciunit = *nounit;
		s_wsfe(&io___42);
		do_fio(&c__1, "Generator", (ftnlen)9);
		do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer));
		do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer));
		e_wsfe();
		*info = abs(iinfo);
		return 0;
	    }

L110:

/*           Call SGEGS to compute H, T, Q, Z, alpha, and beta. */

	    slacpy_(" ", &n, &n, &a[a_offset], lda, &s[s_offset], lda);
	    slacpy_(" ", &n, &n, &b[b_offset], lda, &t[t_offset], lda);
	    ntest = 1;
	    result[1] = ulpinv;

	    sgegs_("V", "V", &n, &s[s_offset], lda, &t[t_offset], lda, &
		    alphr1[1], &alphi1[1], &beta1[1], &q[q_offset], ldq, &z__[
		    z_offset], ldq, &work[1], lwork, &iinfo);
	    if (iinfo != 0) {
		io___43.ciunit = *nounit;
		s_wsfe(&io___43);
		do_fio(&c__1, "SGEGS", (ftnlen)5);
		do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer));
		do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer));
		e_wsfe();
		*info = abs(iinfo);
		goto L140;
	    }

	    ntest = 4;

/*           Do tests 1--4 */

	    sget51_(&c__1, &n, &a[a_offset], lda, &s[s_offset], lda, &q[
		    q_offset], ldq, &z__[z_offset], ldq, &work[1], &result[1])
		    ;
	    sget51_(&c__1, &n, &b[b_offset], lda, &t[t_offset], lda, &q[
		    q_offset], ldq, &z__[z_offset], ldq, &work[1], &result[2])
		    ;
	    sget51_(&c__3, &n, &b[b_offset], lda, &t[t_offset], lda, &q[
		    q_offset], ldq, &q[q_offset], ldq, &work[1], &result[3]);
	    sget51_(&c__3, &n, &b[b_offset], lda, &t[t_offset], lda, &z__[
		    z_offset], ldq, &z__[z_offset], ldq, &work[1], &result[4])
		    ;

/*           Do test 5: compare eigenvalues with diagonals.   
             Also check Schur form of A. */

	    temp1 = 0.f;

	    i__3 = n;
	    for (j = 1; j <= i__3; ++j) {
		ilabad = FALSE_;
		if (alphi1[j] == 0.f) {
/* Computing MAX */
		    r__7 = safmin, r__8 = (r__2 = alphr1[j], dabs(r__2)), 
			    r__7 = max(r__7,r__8), r__8 = (r__3 = s_ref(j, j),
			     dabs(r__3));
/* Computing MAX */
		    r__9 = safmin, r__10 = (r__5 = beta1[j], dabs(r__5)), 
			    r__9 = max(r__9,r__10), r__10 = (r__6 = t_ref(j, 
			    j), dabs(r__6));
		    temp2 = ((r__1 = alphr1[j] - s_ref(j, j), dabs(r__1)) / 
			    dmax(r__7,r__8) + (r__4 = beta1[j] - t_ref(j, j), 
			    dabs(r__4)) / dmax(r__9,r__10)) / ulp;
		    if (j < n) {
			if (s_ref(j + 1, j) != 0.f) {
			    ilabad = TRUE_;
			}
		    }
		    if (j > 1) {
			if (s_ref(j, j - 1) != 0.f) {
			    ilabad = TRUE_;
			}
		    }
		} else {
		    if (alphi1[j] > 0.f) {
			i1 = j;
		    } else {
			i1 = j - 1;
		    }
		    if (i1 <= 0 || i1 >= n) {
			ilabad = TRUE_;
		    } else if (i1 < n - 1) {
			if (s_ref(i1 + 2, i1 + 1) != 0.f) {
			    ilabad = TRUE_;
			}
		    } else if (i1 > 1) {
			if (s_ref(i1, i1 - 1) != 0.f) {
			    ilabad = TRUE_;
			}
		    }
		    if (! ilabad) {
			sget53_(&s_ref(i1, i1), lda, &t_ref(i1, i1), lda, &
				beta1[j], &alphr1[j], &alphi1[j], &temp2, &
				iinfo);
			if (iinfo >= 3) {
			    io___47.ciunit = *nounit;
			    s_wsfe(&io___47);
			    do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(
				    integer));
			    do_fio(&c__1, (char *)&j, (ftnlen)sizeof(integer))
				    ;
			    do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer))
				    ;
			    do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(
				    integer));
			    do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(
				    integer));
			    e_wsfe();
			    *info = abs(iinfo);
			}
		    } else {
			temp2 = ulpinv;
		    }
		}
		temp1 = dmax(temp1,temp2);
		if (ilabad) {
		    io___48.ciunit = *nounit;
		    s_wsfe(&io___48);
		    do_fio(&c__1, (char *)&j, (ftnlen)sizeof(integer));
		    do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
		    do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer));
		    do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer))
			    ;
		    e_wsfe();
		}
/* L120: */
	    }
	    result[5] = temp1;

/*           Call SGEGV to compute S2, T2, VL, and VR, do tests.   

             Eigenvalues and Eigenvectors */

	    slacpy_(" ", &n, &n, &a[a_offset], lda, &s2[s2_offset], lda);
	    slacpy_(" ", &n, &n, &b[b_offset], lda, &t2[t2_offset], lda);
	    ntest = 6;
	    result[6] = ulpinv;

	    sgegv_("V", "V", &n, &s2[s2_offset], lda, &t2[t2_offset], lda, &
		    alphr2[1], &alphi2[1], &beta2[1], &vl[vl_offset], ldq, &
		    vr[vr_offset], ldq, &work[1], lwork, &iinfo);
	    if (iinfo != 0) {
		io___49.ciunit = *nounit;
		s_wsfe(&io___49);
		do_fio(&c__1, "SGEGV", (ftnlen)5);
		do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer));
		do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer));
		e_wsfe();
		*info = abs(iinfo);
		goto L140;
	    }

	    ntest = 7;

/*           Do Tests 6 and 7 */

	    sget52_(&c_true, &n, &a[a_offset], lda, &b[b_offset], lda, &vl[
		    vl_offset], ldq, &alphr2[1], &alphi2[1], &beta2[1], &work[
		    1], dumma);
	    result[6] = dumma[0];
	    if (dumma[1] > *thrshn) {
		io___51.ciunit = *nounit;
		s_wsfe(&io___51);
		do_fio(&c__1, "Left", (ftnlen)4);
		do_fio(&c__1, "SGEGV", (ftnlen)5);
		do_fio(&c__1, (char *)&dumma[1], (ftnlen)sizeof(real));
		do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer));
		do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer));
		e_wsfe();
	    }

	    sget52_(&c_false, &n, &a[a_offset], lda, &b[b_offset], lda, &vr[
		    vr_offset], ldq, &alphr2[1], &alphi2[1], &beta2[1], &work[
		    1], dumma);
	    result[7] = dumma[0];
	    if (dumma[1] > *thresh) {
		io___52.ciunit = *nounit;
		s_wsfe(&io___52);
		do_fio(&c__1, "Right", (ftnlen)5);
		do_fio(&c__1, "SGEGV", (ftnlen)5);
		do_fio(&c__1, (char *)&dumma[1], (ftnlen)sizeof(real));
		do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer));
		do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer));
		e_wsfe();
	    }

/*           Check form of Complex eigenvalues. */

	    i__3 = n;
	    for (j = 1; j <= i__3; ++j) {
		ilabad = FALSE_;
		if (alphi2[j] > 0.f) {
		    if (j == n) {
			ilabad = TRUE_;
		    } else if (alphi2[j + 1] >= 0.f) {
			ilabad = TRUE_;
		    }
		} else if (alphi2[j] < 0.f) {
		    if (j == 1) {
			ilabad = TRUE_;
		    } else if (alphi2[j - 1] <= 0.f) {
			ilabad = TRUE_;
		    }
		}
		if (ilabad) {
		    io___53.ciunit = *nounit;
		    s_wsfe(&io___53);
		    do_fio(&c__1, (char *)&j, (ftnlen)sizeof(integer));
		    do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
		    do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer));
		    do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer))
			    ;
		    e_wsfe();
		}
/* L130: */
	    }

/*           End of Loop -- Check for RESULT(j) > THRESH */

L140:

	    ntestt += ntest;

/*           Print out tests which fail. */

	    i__3 = ntest;
	    for (jr = 1; jr <= i__3; ++jr) {
		if (result[jr] >= *thresh) {

/*                 If this is the first test to fail,   
                   print a header to the data file. */

		    if (nerrs == 0) {
			io___54.ciunit = *nounit;
			s_wsfe(&io___54);
			do_fio(&c__1, "SGG", (ftnlen)3);
			e_wsfe();

/*                    Matrix types */

			io___55.ciunit = *nounit;
			s_wsfe(&io___55);
			e_wsfe();
			io___56.ciunit = *nounit;
			s_wsfe(&io___56);
			e_wsfe();
			io___57.ciunit = *nounit;
			s_wsfe(&io___57);
			do_fio(&c__1, "Orthogonal", (ftnlen)10);
			e_wsfe();

/*                    Tests performed */

			io___58.ciunit = *nounit;
			s_wsfe(&io___58);
			do_fio(&c__1, "orthogonal", (ftnlen)10);
			do_fio(&c__1, "'", (ftnlen)1);
			do_fio(&c__1, "transpose", (ftnlen)9);
			for (j = 1; j <= 5; ++j) {
			    do_fio(&c__1, "'", (ftnlen)1);
			}
			e_wsfe();

		    }
		    ++nerrs;
		    if (result[jr] < 1e4f) {
			io___59.ciunit = *nounit;
			s_wsfe(&io___59);
			do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
			do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer))
				;
			do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(
				integer));
			do_fio(&c__1, (char *)&jr, (ftnlen)sizeof(integer));
			do_fio(&c__1, (char *)&result[jr], (ftnlen)sizeof(
				real));
			e_wsfe();
		    } else {
			io___60.ciunit = *nounit;
			s_wsfe(&io___60);
			do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
			do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer))
				;
			do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(
				integer));
			do_fio(&c__1, (char *)&jr, (ftnlen)sizeof(integer));
			do_fio(&c__1, (char *)&result[jr], (ftnlen)sizeof(
				real));
			e_wsfe();
		    }
		}
/* L150: */
	    }

L160:
	    ;
	}
/* L170: */
    }

/*     Summary */

    alasvm_("SGG", nounit, &nerrs, &ntestt, &c__0);
    return 0;









/*     End of SDRVGG */

} /* sdrvgg_ */

#undef z___ref
#undef t_ref
#undef s_ref
#undef q_ref
#undef b_ref
#undef a_ref