#include "blaswrap.h" /* -- translated by f2c (version 19990503). You must link the resulting object file with the libraries: -lf2c -lm (in that order) */ #include "f2c.h" /* Common Block Declarations */ struct { integer infot, nunit; logical ok, lerr; } infoc_; #define infoc_1 infoc_ struct { char srnamt[6]; } srnamc_; #define srnamc_1 srnamc_ /* Table of constant values */ static real c_b13 = 0.f; static real c_b17 = 1.f; static integer c__4 = 4; static integer c__1 = 1; static integer c__0 = 0; /* Subroutine */ int sdrvbd_(integer *nsizes, integer *mm, integer *nn, integer *ntypes, logical *dotype, integer *iseed, real *thresh, real * a, integer *lda, real *u, integer *ldu, real *vt, integer *ldvt, real *asav, real *usav, real *vtsav, real *s, real *ssav, real *e, real * work, integer *lwork, integer *iwork, integer *nout, integer *info) { /* Initialized data */ static char cjob[1*4] = "N" "O" "S" "A"; /* Format strings */ static char fmt_9996[] = "(\002 SDRVBD: \002,a,\002 returned INFO=\002,i" "6,\002.\002,/9x,\002M=\002,i6,\002, N=\002,i6,\002, JTYPE=\002,i" "6,\002, ISEED=(\002,3(i5,\002,\002),i5,\002)\002)"; static char fmt_9995[] = "(\002 SDRVBD: \002,a,\002 returned INFO=\002,i" "6,\002.\002,/9x,\002M=\002,i6,\002, N=\002,i6,\002, JTYPE=\002,i" "6,\002, LSWORK=\002,i6,/9x,\002ISEED=(\002,3(i5,\002,\002),i5" ",\002)\002)"; static char fmt_9999[] = "(\002 SVD -- Real Singular Value Decomposition" " Driver \002,/\002 Matrix types (see SDRVBD for details):\002,/" "/\002 1 = Zero matrix\002,/\002 2 = Identity matrix\002,/\002 3 " "= Evenly spaced singular values near 1\002,/\002 4 = Evenly spac" "ed singular values near underflow\002,/\002 5 = Evenly spaced si" "ngular values near overflow\002,//\002 Tests performed: ( A is d" "ense, U and V are orthogonal,\002,/19x,\002 S is an array, and U" "partial, VTpartial, and\002,/19x,\002 Spartial are partially com" "puted U, VT and S),\002,/)"; static char fmt_9998[] = "(\002 1 = | A - U diag(S) VT | / ( |A| max(M,N" ") ulp ) \002,/\002 2 = | I - U**T U | / ( M ulp ) \002,/\002 3 =" " | I - VT VT**T | / ( N ulp ) \002,/\002 4 = 0 if S contains min" "(M,N) nonnegative values in\002,\002 decreasing order, else 1/ulp" "\002,/\002 5 = | U - Upartial | / ( M ulp )\002,/\002 6 = | VT -" " VTpartial | / ( N ulp )\002,/\002 7 = | S - Spartial | / ( min(" "M,N) ulp |S| )\002,/\002 8 = | A - U diag(S) VT | / ( |A| max(M," "N) ulp ) \002,/\002 9 = | I - U**T U | / ( M ulp ) \002,/\00210 " "= | I - VT VT**T | / ( N ulp ) \002,/\00211 = 0 if S contains mi" "n(M,N) nonnegative values in\002,\002 decreasing order, else 1/u" "lp\002,/\00212 = | U - Upartial | / ( M ulp )\002,/\00213 = | VT" " - VTpartial | / ( N ulp )\002,/\00214 = | S - Spartial | / ( mi" "n(M,N) ulp |S| )\002,//)"; static char fmt_9997[] = "(\002 M=\002,i5,\002, N=\002,i5,\002, type " "\002,i1,\002, IWS=\002,i1,\002, seed=\002,4(i4,\002,\002),\002 t" "est(\002,i2,\002)=\002,g11.4)"; /* System generated locals */ integer a_dim1, a_offset, asav_dim1, asav_offset, u_dim1, u_offset, usav_dim1, usav_offset, vt_dim1, vt_offset, vtsav_dim1, vtsav_offset, i__1, i__2, i__3, i__4, i__5, i__6, i__7, i__8, i__9, i__10, i__11, i__12, i__13, i__14; real r__1, r__2, r__3; /* Builtin functions Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen); integer s_wsfe(cilist *), do_fio(integer *, char *, ftnlen), e_wsfe(void); /* Local variables */ static char jobq[1], path[3], jobu[1]; static integer mmax, nmax; static real unfl, ovfl; static integer ijvt, i__, j, m, n; static logical badmm, badnn; static integer nfail; extern /* Subroutine */ int sbdt01_(integer *, integer *, integer *, real *, integer *, real *, integer *, real *, real *, real *, integer * , real *, real *); static integer iinfo; static real anorm; static integer mnmin, mnmax; static char jobvt[1]; static integer jsize; extern /* Subroutine */ int sort01_(char *, integer *, integer *, real *, integer *, real *, integer *, real *), sort03_(char *, integer *, integer *, integer *, integer *, real *, integer *, real *, integer *, real *, integer *, real *, integer *); static integer jtype, ntest, iwtmp; extern /* Subroutine */ int slabad_(real *, real *); extern doublereal slamch_(char *); extern /* Subroutine */ int sgesdd_(char *, integer *, integer *, real *, integer *, real *, real *, integer *, real *, integer *, real *, integer *, integer *, integer *), xerbla_(char *, integer *); static integer ioldsd[4]; extern /* Subroutine */ int alasvm_(char *, integer *, integer *, integer *, integer *), sgesvd_(char *, char *, integer *, integer *, real *, integer *, real *, real *, integer *, real *, integer * , real *, integer *, integer *), slacpy_(char *, integer *, integer *, real *, integer *, real *, integer *), slaset_(char *, integer *, integer *, real *, real *, real *, integer *), slatms_(integer *, integer *, char *, integer *, char *, real *, integer *, real *, real *, integer *, integer *, char *, real *, integer *, real *, integer *); static integer minwrk; static real ulpinv, result[14]; static integer lswork, mtypes; static real dif, div; static integer ijq, iju; static real ulp; static integer iws; /* Fortran I/O blocks */ static cilist io___25 = { 0, 0, 0, fmt_9996, 0 }; static cilist io___30 = { 0, 0, 0, fmt_9995, 0 }; static cilist io___38 = { 0, 0, 0, fmt_9995, 0 }; static cilist io___41 = { 0, 0, 0, fmt_9999, 0 }; static cilist io___42 = { 0, 0, 0, fmt_9998, 0 }; static cilist io___43 = { 0, 0, 0, fmt_9997, 0 }; /* -- LAPACK test routine (version 3.0) -- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., Courant Institute, Argonne National Lab, and Rice University October 31, 1999 Purpose ======= SDRVBD checks the singular value decomposition (SVD) drivers SGESVD and SGESDD. Both SGESVD and SGESDD factor A = U diag(S) VT, where U and VT are orthogonal and diag(S) is diagonal with the entries of the array S on its diagonal. The entries of S are the singular values, nonnegative and stored in decreasing order. U and VT can be optionally not computed, overwritten on A, or computed partially. A is M by N. Let MNMIN = min( M, N ). S has dimension MNMIN. U can be M by M or M by MNMIN. VT can be N by N or MNMIN by N. When SDRVBD is called, a number of matrix "sizes" (M's and N's) and a number of matrix "types" are specified. For each size (M,N) and each type of matrix, and for the minimal workspace as well as workspace adequate to permit blocking, an M x N matrix "A" will be generated and used to test the SVD routines. For each matrix, A will be factored as A = U diag(S) VT and the following 12 tests computed: Test for SGESVD: (1) | A - U diag(S) VT | / ( |A| max(M,N) ulp ) (2) | I - U'U | / ( M ulp ) (3) | I - VT VT' | / ( N ulp ) (4) S contains MNMIN nonnegative values in decreasing order. (Return 0 if true, 1/ULP if false.) (5) | U - Upartial | / ( M ulp ) where Upartial is a partially computed U. (6) | VT - VTpartial | / ( N ulp ) where VTpartial is a partially computed VT. (7) | S - Spartial | / ( MNMIN ulp |S| ) where Spartial is the vector of singular values from the partial SVD Test for SGESDD: (8) | A - U diag(S) VT | / ( |A| max(M,N) ulp ) (9) | I - U'U | / ( M ulp ) (10) | I - VT VT' | / ( N ulp ) (11) S contains MNMIN nonnegative values in decreasing order. (Return 0 if true, 1/ULP if false.) (12) | U - Upartial | / ( M ulp ) where Upartial is a partially computed U. (13) | VT - VTpartial | / ( N ulp ) where VTpartial is a partially computed VT. (14) | S - Spartial | / ( MNMIN ulp |S| ) where Spartial is the vector of singular values from the partial SVD The "sizes" are specified by the arrays MM(1:NSIZES) and NN(1:NSIZES); the value of each element pair (MM(j),NN(j)) specifies one size. The "types" are specified by a logical array DOTYPE( 1:NTYPES ); if DOTYPE(j) is .TRUE., then matrix type "j" will be generated. Currently, the list of possible types is: (1) The zero matrix. (2) The identity matrix. (3) A matrix of the form U D V, where U and V are orthogonal and D has evenly spaced entries 1, ..., ULP with random signs on the diagonal. (4) Same as (3), but multiplied by the underflow-threshold / ULP. (5) Same as (3), but multiplied by the overflow-threshold * ULP. Arguments ========== NSIZES (input) INTEGER The number of matrix sizes (M,N) contained in the vectors MM and NN. MM (input) INTEGER array, dimension (NSIZES) The values of the matrix row dimension M. NN (input) INTEGER array, dimension (NSIZES) The values of the matrix column dimension N. NTYPES (input) INTEGER The number of elements in DOTYPE. If it is zero, SDRVBD does nothing. It must be at least zero. If it is MAXTYP+1 and NSIZES is 1, then an additional type, MAXTYP+1 is defined, which is to use whatever matrices are in A and B. This is only useful if DOTYPE(1:MAXTYP) is .FALSE. and DOTYPE(MAXTYP+1) is .TRUE. . DOTYPE (input) LOGICAL array, dimension (NTYPES) If DOTYPE(j) is .TRUE., then for each size (m,n), a matrix of type j will be generated. If NTYPES is smaller than the maximum number of types defined (PARAMETER MAXTYP), then types NTYPES+1 through MAXTYP will not be generated. If NTYPES is larger than MAXTYP, DOTYPE(MAXTYP+1) through DOTYPE(NTYPES) will be ignored. ISEED (input/output) INTEGER array, dimension (4) On entry, the seed of the random number generator. The array elements should be between 0 and 4095; if not they will be reduced mod 4096. Also, ISEED(4) must be odd. On exit, ISEED is changed and can be used in the next call to SDRVBD to continue the same random number sequence. THRESH (input) REAL The threshold value for the test ratios. A result is included in the output file if RESULT >= THRESH. The test ratios are scaled to be O(1), so THRESH should be a small multiple of 1, e.g., 10 or 100. To have every test ratio printed, use THRESH = 0. A (workspace) REAL array, dimension (LDA,NMAX) where NMAX is the maximum value of N in NN. LDA (input) INTEGER The leading dimension of the array A. LDA >= max(1,MMAX), where MMAX is the maximum value of M in MM. U (workspace) REAL array, dimension (LDU,MMAX) LDU (input) INTEGER The leading dimension of the array U. LDU >= max(1,MMAX). VT (workspace) REAL array, dimension (LDVT,NMAX) LDVT (input) INTEGER The leading dimension of the array VT. LDVT >= max(1,NMAX). ASAV (workspace) REAL array, dimension (LDA,NMAX) USAV (workspace) REAL array, dimension (LDU,MMAX) VTSAV (workspace) REAL array, dimension (LDVT,NMAX) S (workspace) REAL array, dimension (max(min(MM,NN))) SSAV (workspace) REAL array, dimension (max(min(MM,NN))) E (workspace) REAL array, dimension (max(min(MM,NN))) WORK (workspace) REAL array, dimension (LWORK) LWORK (input) INTEGER The number of entries in WORK. This must be at least max(3*MN+MX,5*MN-4)+2*MN**2 for all pairs pairs (MN,MX)=( min(MM(j),NN(j), max(MM(j),NN(j)) ) IWORK (workspace) INTEGER array, dimension at least 8*min(M,N) NOUT (input) INTEGER The FORTRAN unit number for printing out error messages (e.g., if a routine returns IINFO not equal to 0.) INFO (output) INTEGER If 0, then everything ran OK. -1: NSIZES < 0 -2: Some MM(j) < 0 -3: Some NN(j) < 0 -4: NTYPES < 0 -7: THRESH < 0 -10: LDA < 1 or LDA < MMAX, where MMAX is max( MM(j) ). -12: LDU < 1 or LDU < MMAX. -14: LDVT < 1 or LDVT < NMAX, where NMAX is max( NN(j) ). -21: LWORK too small. If SLATMS, or SGESVD returns an error code, the absolute value of it is returned. ===================================================================== Parameter adjustments */ --mm; --nn; --dotype; --iseed; asav_dim1 = *lda; asav_offset = 1 + asav_dim1 * 1; asav -= asav_offset; a_dim1 = *lda; a_offset = 1 + a_dim1 * 1; a -= a_offset; usav_dim1 = *ldu; usav_offset = 1 + usav_dim1 * 1; usav -= usav_offset; u_dim1 = *ldu; u_offset = 1 + u_dim1 * 1; u -= u_offset; vtsav_dim1 = *ldvt; vtsav_offset = 1 + vtsav_dim1 * 1; vtsav -= vtsav_offset; vt_dim1 = *ldvt; vt_offset = 1 + vt_dim1 * 1; vt -= vt_offset; --s; --ssav; --e; --work; --iwork; /* Function Body Check for errors */ *info = 0; badmm = FALSE_; badnn = FALSE_; mmax = 1; nmax = 1; mnmax = 1; minwrk = 1; i__1 = *nsizes; for (j = 1; j <= i__1; ++j) { /* Computing MAX */ i__2 = mmax, i__3 = mm[j]; mmax = max(i__2,i__3); if (mm[j] < 0) { badmm = TRUE_; } /* Computing MAX */ i__2 = nmax, i__3 = nn[j]; nmax = max(i__2,i__3); if (nn[j] < 0) { badnn = TRUE_; } /* Computing MAX Computing MIN */ i__4 = mm[j], i__5 = nn[j]; i__2 = mnmax, i__3 = min(i__4,i__5); mnmax = max(i__2,i__3); /* Computing MAX Computing MAX Computing MIN */ i__6 = mm[j], i__7 = nn[j]; /* Computing MAX */ i__8 = mm[j], i__9 = nn[j]; /* Computing MIN */ i__10 = mm[j], i__11 = nn[j] - 4; i__4 = min(i__6,i__7) * 3 + max(i__8,i__9), i__5 = min(i__10,i__11) * 5; /* Computing MIN */ i__13 = mm[j], i__14 = nn[j]; /* Computing 2nd power */ i__12 = min(i__13,i__14); i__2 = minwrk, i__3 = max(i__4,i__5) + (i__12 * i__12 << 1); minwrk = max(i__2,i__3); /* L10: */ } /* Check for errors */ if (*nsizes < 0) { *info = -1; } else if (badmm) { *info = -2; } else if (badnn) { *info = -3; } else if (*ntypes < 0) { *info = -4; } else if (*lda < max(1,mmax)) { *info = -10; } else if (*ldu < max(1,mmax)) { *info = -12; } else if (*ldvt < max(1,nmax)) { *info = -14; } else if (minwrk > *lwork) { *info = -21; } if (*info != 0) { i__1 = -(*info); xerbla_("SDRVBD", &i__1); return 0; } /* Initialize constants */ s_copy(path, "Single precision", (ftnlen)1, (ftnlen)16); s_copy(path + 1, "BD", (ftnlen)2, (ftnlen)2); nfail = 0; ntest = 0; unfl = slamch_("Safe minimum"); ovfl = 1.f / unfl; slabad_(&unfl, &ovfl); ulp = slamch_("Precision"); ulpinv = 1.f / ulp; infoc_1.infot = 0; /* Loop over sizes, types */ i__1 = *nsizes; for (jsize = 1; jsize <= i__1; ++jsize) { m = mm[jsize]; n = nn[jsize]; mnmin = min(m,n); if (*nsizes != 1) { mtypes = min(5,*ntypes); } else { mtypes = min(6,*ntypes); } i__2 = mtypes; for (jtype = 1; jtype <= i__2; ++jtype) { if (! dotype[jtype]) { goto L140; } for (j = 1; j <= 4; ++j) { ioldsd[j - 1] = iseed[j]; /* L20: */ } /* Compute "A" */ if (mtypes > 5) { goto L30; } if (jtype == 1) { /* Zero matrix */ slaset_("Full", &m, &n, &c_b13, &c_b13, &a[a_offset], lda); } else if (jtype == 2) { /* Identity matrix */ slaset_("Full", &m, &n, &c_b13, &c_b17, &a[a_offset], lda); } else { /* (Scaled) random matrix */ if (jtype == 3) { anorm = 1.f; } if (jtype == 4) { anorm = unfl / ulp; } if (jtype == 5) { anorm = ovfl * ulp; } r__1 = (real) mnmin; i__3 = m - 1; i__4 = n - 1; slatms_(&m, &n, "U", &iseed[1], "N", &s[1], &c__4, &r__1, & anorm, &i__3, &i__4, "N", &a[a_offset], lda, &work[1], &iinfo); if (iinfo != 0) { io___25.ciunit = *nout; s_wsfe(&io___25); do_fio(&c__1, "Generator", (ftnlen)9); do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&m, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer)); do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer)) ; e_wsfe(); *info = abs(iinfo); return 0; } } L30: slacpy_("F", &m, &n, &a[a_offset], lda, &asav[asav_offset], lda); /* Do for minimal and adequate (for blocking) workspace */ for (iws = 1; iws <= 4; ++iws) { for (j = 1; j <= 14; ++j) { result[j - 1] = -1.f; /* L40: */ } /* Test SGESVD: Factorize A Computing MAX */ i__3 = min(m,n) * 3 + max(m,n), i__4 = min(m,n) * 5; iwtmp = max(i__3,i__4); lswork = iwtmp + (iws - 1) * (*lwork - iwtmp) / 3; lswork = min(lswork,*lwork); lswork = max(lswork,1); if (iws == 4) { lswork = *lwork; } if (iws > 1) { slacpy_("F", &m, &n, &asav[asav_offset], lda, &a[a_offset] , lda); } s_copy(srnamc_1.srnamt, "SGESVD", (ftnlen)6, (ftnlen)6); sgesvd_("A", "A", &m, &n, &a[a_offset], lda, &ssav[1], &usav[ usav_offset], ldu, &vtsav[vtsav_offset], ldvt, &work[ 1], &lswork, &iinfo); if (iinfo != 0) { io___30.ciunit = *nout; s_wsfe(&io___30); do_fio(&c__1, "GESVD", (ftnlen)5); do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&m, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&lswork, (ftnlen)sizeof(integer)); do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer)) ; e_wsfe(); *info = abs(iinfo); return 0; } /* Do tests 1--4 */ sbdt01_(&m, &n, &c__0, &asav[asav_offset], lda, &usav[ usav_offset], ldu, &ssav[1], &e[1], &vtsav[ vtsav_offset], ldvt, &work[1], result); if (m != 0 && n != 0) { sort01_("Columns", &m, &m, &usav[usav_offset], ldu, &work[ 1], lwork, &result[1]); sort01_("Rows", &n, &n, &vtsav[vtsav_offset], ldvt, &work[ 1], lwork, &result[2]); } result[3] = 0.f; i__3 = mnmin - 1; for (i__ = 1; i__ <= i__3; ++i__) { if (ssav[i__] < ssav[i__ + 1]) { result[3] = ulpinv; } if (ssav[i__] < 0.f) { result[3] = ulpinv; } /* L50: */ } if (mnmin >= 1) { if (ssav[mnmin] < 0.f) { result[3] = ulpinv; } } /* Do partial SVDs, comparing to SSAV, USAV, and VTSAV */ result[4] = 0.f; result[5] = 0.f; result[6] = 0.f; for (iju = 0; iju <= 3; ++iju) { for (ijvt = 0; ijvt <= 3; ++ijvt) { if (iju == 3 && ijvt == 3 || iju == 1 && ijvt == 1) { goto L70; } *(unsigned char *)jobu = *(unsigned char *)&cjob[iju]; *(unsigned char *)jobvt = *(unsigned char *)&cjob[ ijvt]; slacpy_("F", &m, &n, &asav[asav_offset], lda, &a[ a_offset], lda); s_copy(srnamc_1.srnamt, "SGESVD", (ftnlen)6, (ftnlen) 6); sgesvd_(jobu, jobvt, &m, &n, &a[a_offset], lda, &s[1], &u[u_offset], ldu, &vt[vt_offset], ldvt, & work[1], &lswork, &iinfo); /* Compare U */ dif = 0.f; if (m > 0 && n > 0) { if (iju == 1) { sort03_("C", &m, &mnmin, &m, &mnmin, &usav[ usav_offset], ldu, &a[a_offset], lda, &work[1], lwork, &dif, &iinfo); } else if (iju == 2) { sort03_("C", &m, &mnmin, &m, &mnmin, &usav[ usav_offset], ldu, &u[u_offset], ldu, &work[1], lwork, &dif, &iinfo); } else if (iju == 3) { sort03_("C", &m, &m, &m, &mnmin, &usav[ usav_offset], ldu, &u[u_offset], ldu, &work[1], lwork, &dif, &iinfo); } } result[4] = dmax(result[4],dif); /* Compare VT */ dif = 0.f; if (m > 0 && n > 0) { if (ijvt == 1) { sort03_("R", &n, &mnmin, &n, &mnmin, &vtsav[ vtsav_offset], ldvt, &a[a_offset], lda, &work[1], lwork, &dif, &iinfo); } else if (ijvt == 2) { sort03_("R", &n, &mnmin, &n, &mnmin, &vtsav[ vtsav_offset], ldvt, &vt[vt_offset], ldvt, &work[1], lwork, &dif, &iinfo); } else if (ijvt == 3) { sort03_("R", &n, &n, &n, &mnmin, &vtsav[ vtsav_offset], ldvt, &vt[vt_offset], ldvt, &work[1], lwork, &dif, &iinfo); } } result[5] = dmax(result[5],dif); /* Compare S */ dif = 0.f; /* Computing MAX */ r__1 = (real) mnmin * ulp * s[1]; div = dmax(r__1,unfl); i__3 = mnmin - 1; for (i__ = 1; i__ <= i__3; ++i__) { if (ssav[i__] < ssav[i__ + 1]) { dif = ulpinv; } if (ssav[i__] < 0.f) { dif = ulpinv; } /* Computing MAX */ r__2 = dif, r__3 = (r__1 = ssav[i__] - s[i__], dabs(r__1)) / div; dif = dmax(r__2,r__3); /* L60: */ } result[6] = dmax(result[6],dif); L70: ; } /* L80: */ } /* Test SGESDD: Factorize A */ iwtmp = mnmin * 5 * mnmin + mnmin * 9 + max(m,n); lswork = iwtmp + (iws - 1) * (*lwork - iwtmp) / 3; lswork = min(lswork,*lwork); lswork = max(lswork,1); if (iws == 4) { lswork = *lwork; } slacpy_("F", &m, &n, &asav[asav_offset], lda, &a[a_offset], lda); s_copy(srnamc_1.srnamt, "SGESDD", (ftnlen)6, (ftnlen)6); sgesdd_("A", &m, &n, &a[a_offset], lda, &ssav[1], &usav[ usav_offset], ldu, &vtsav[vtsav_offset], ldvt, &work[ 1], &lswork, &iwork[1], &iinfo); if (iinfo != 0) { io___38.ciunit = *nout; s_wsfe(&io___38); do_fio(&c__1, "GESDD", (ftnlen)5); do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&m, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&lswork, (ftnlen)sizeof(integer)); do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer)) ; e_wsfe(); *info = abs(iinfo); return 0; } /* Do tests 8--11 */ sbdt01_(&m, &n, &c__0, &asav[asav_offset], lda, &usav[ usav_offset], ldu, &ssav[1], &e[1], &vtsav[ vtsav_offset], ldvt, &work[1], &result[7]); if (m != 0 && n != 0) { sort01_("Columns", &m, &m, &usav[usav_offset], ldu, &work[ 1], lwork, &result[8]); sort01_("Rows", &n, &n, &vtsav[vtsav_offset], ldvt, &work[ 1], lwork, &result[9]); } result[10] = 0.f; i__3 = mnmin - 1; for (i__ = 1; i__ <= i__3; ++i__) { if (ssav[i__] < ssav[i__ + 1]) { result[10] = ulpinv; } if (ssav[i__] < 0.f) { result[10] = ulpinv; } /* L90: */ } if (mnmin >= 1) { if (ssav[mnmin] < 0.f) { result[10] = ulpinv; } } /* Do partial SVDs, comparing to SSAV, USAV, and VTSAV */ result[11] = 0.f; result[12] = 0.f; result[13] = 0.f; for (ijq = 0; ijq <= 2; ++ijq) { *(unsigned char *)jobq = *(unsigned char *)&cjob[ijq]; slacpy_("F", &m, &n, &asav[asav_offset], lda, &a[a_offset] , lda); s_copy(srnamc_1.srnamt, "SGESDD", (ftnlen)6, (ftnlen)6); sgesdd_(jobq, &m, &n, &a[a_offset], lda, &s[1], &u[ u_offset], ldu, &vt[vt_offset], ldvt, &work[1], & lswork, &iwork[1], &iinfo); /* Compare U */ dif = 0.f; if (m > 0 && n > 0) { if (ijq == 1) { if (m >= n) { sort03_("C", &m, &mnmin, &m, &mnmin, &usav[ usav_offset], ldu, &a[a_offset], lda, &work[1], lwork, &dif, info); } else { sort03_("C", &m, &mnmin, &m, &mnmin, &usav[ usav_offset], ldu, &u[u_offset], ldu, &work[1], lwork, &dif, info); } } else if (ijq == 2) { sort03_("C", &m, &mnmin, &m, &mnmin, &usav[ usav_offset], ldu, &u[u_offset], ldu, & work[1], lwork, &dif, info); } } result[11] = dmax(result[11],dif); /* Compare VT */ dif = 0.f; if (m > 0 && n > 0) { if (ijq == 1) { if (m >= n) { sort03_("R", &n, &mnmin, &n, &mnmin, &vtsav[ vtsav_offset], ldvt, &vt[vt_offset], ldvt, &work[1], lwork, &dif, info); } else { sort03_("R", &n, &mnmin, &n, &mnmin, &vtsav[ vtsav_offset], ldvt, &a[a_offset], lda, &work[1], lwork, &dif, info); } } else if (ijq == 2) { sort03_("R", &n, &mnmin, &n, &mnmin, &vtsav[ vtsav_offset], ldvt, &vt[vt_offset], ldvt, &work[1], lwork, &dif, info); } } result[12] = dmax(result[12],dif); /* Compare S */ dif = 0.f; /* Computing MAX */ r__1 = (real) mnmin * ulp * s[1]; div = dmax(r__1,unfl); i__3 = mnmin - 1; for (i__ = 1; i__ <= i__3; ++i__) { if (ssav[i__] < ssav[i__ + 1]) { dif = ulpinv; } if (ssav[i__] < 0.f) { dif = ulpinv; } /* Computing MAX */ r__2 = dif, r__3 = (r__1 = ssav[i__] - s[i__], dabs( r__1)) / div; dif = dmax(r__2,r__3); /* L100: */ } result[13] = dmax(result[13],dif); /* L110: */ } /* End of Loop -- Check for RESULT(j) > THRESH */ for (j = 1; j <= 14; ++j) { if (result[j - 1] >= *thresh) { if (nfail == 0) { io___41.ciunit = *nout; s_wsfe(&io___41); e_wsfe(); io___42.ciunit = *nout; s_wsfe(&io___42); e_wsfe(); } io___43.ciunit = *nout; s_wsfe(&io___43); do_fio(&c__1, (char *)&m, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer)) ; do_fio(&c__1, (char *)&iws, (ftnlen)sizeof(integer)); do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&j, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&result[j - 1], (ftnlen)sizeof( real)); e_wsfe(); ++nfail; } /* L120: */ } ntest += 14; /* L130: */ } L140: ; } /* L150: */ } /* Summary */ alasvm_(path, nout, &nfail, &ntest, &c__0); return 0; /* End of SDRVBD */ } /* sdrvbd_ */