#include "blaswrap.h"
/*  -- translated by f2c (version 19990503).
   You must link the resulting object file with the libraries:
	-lf2c -lm   (in that order)
*/

#include "f2c.h"

/* Table of constant values */

static doublereal c_b18 = 0.;
static integer c__0 = 0;
static integer c__6 = 6;
static doublereal c_b35 = 1.;
static integer c__1 = 1;
static integer c__4 = 4;
static integer c__5 = 5;
static doublereal c_b82 = 10.;
static integer c__3 = 3;

/* Subroutine */ int ddrvsg_(integer *nsizes, integer *nn, integer *ntypes, 
	logical *dotype, integer *iseed, doublereal *thresh, integer *nounit, 
	doublereal *a, integer *lda, doublereal *b, integer *ldb, doublereal *
	d__, doublereal *z__, integer *ldz, doublereal *ab, doublereal *bb, 
	doublereal *ap, doublereal *bp, doublereal *work, integer *nwork, 
	integer *iwork, integer *liwork, doublereal *result, integer *info)
{
    /* Initialized data */

    static integer ktype[21] = { 1,2,4,4,4,4,4,5,5,5,5,5,8,8,8,9,9,9,9,9,9 };
    static integer kmagn[21] = { 1,1,1,1,1,2,3,1,1,1,2,3,1,2,3,1,1,1,1,1,1 };
    static integer kmode[21] = { 0,0,4,3,1,4,4,4,3,1,4,4,0,0,0,4,4,4,4,4,4 };

    /* Format strings */
    static char fmt_9999[] = "(\002 DDRVSG: \002,a,\002 returned INFO=\002,i"
	    "6,\002.\002,/9x,\002N=\002,i6,\002, JTYPE=\002,i6,\002, ISEED="
	    "(\002,3(i5,\002,\002),i5,\002)\002)";

    /* System generated locals */
    address a__1[3];
    integer a_dim1, a_offset, ab_dim1, ab_offset, b_dim1, b_offset, bb_dim1, 
	    bb_offset, z_dim1, z_offset, i__1, i__2, i__3, i__4, i__5, i__6[3]
	    , i__7;
    char ch__1[10], ch__2[11], ch__3[12], ch__4[13];

    /* Builtin functions */
    double sqrt(doublereal);
    integer s_wsfe(cilist *), do_fio(integer *, char *, ftnlen), e_wsfe(void);
    /* Subroutine */ int s_cat(char *, char **, integer *, integer *, ftnlen);

    /* Local variables */
    static doublereal cond;
    static integer jcol, nmax;
    static doublereal unfl, ovfl;
    static char uplo[1];
    static integer i__, j, m, n;
    static logical badnn;
    static integer imode;
    extern logical lsame_(char *, char *);
    extern /* Subroutine */ int dsgt01_(integer *, char *, integer *, integer 
	    *, doublereal *, integer *, doublereal *, integer *, doublereal *,
	     integer *, doublereal *, doublereal *, doublereal *);
    static integer iinfo;
    extern /* Subroutine */ int dsbgv_(char *, char *, integer *, integer *, 
	    integer *, doublereal *, integer *, doublereal *, integer *, 
	    doublereal *, doublereal *, integer *, doublereal *, integer *);
    static doublereal aninv, anorm;
    static integer itemp, nmats;
    extern /* Subroutine */ int dspgv_(integer *, char *, char *, integer *, 
	    doublereal *, doublereal *, doublereal *, doublereal *, integer *,
	     doublereal *, integer *);
    static integer jsize, nerrs, itype, jtype, ntest;
    extern /* Subroutine */ int dsygv_(integer *, char *, char *, integer *, 
	    doublereal *, integer *, doublereal *, integer *, doublereal *, 
	    doublereal *, integer *, integer *);
    static integer iseed2[4];
    extern /* Subroutine */ int dlabad_(doublereal *, doublereal *);
    static integer ka, kb, ij, il;
    extern doublereal dlamch_(char *);
    static integer iu;
    static doublereal vl;
    extern doublereal dlarnd_(integer *, integer *);
    extern /* Subroutine */ int dsbgvd_(char *, char *, integer *, integer *, 
	    integer *, doublereal *, integer *, doublereal *, integer *, 
	    doublereal *, doublereal *, integer *, doublereal *, integer *, 
	    integer *, integer *, integer *);
    static doublereal vu;
    static integer idumma[1];
    extern /* Subroutine */ int dlacpy_(char *, integer *, integer *, 
	    doublereal *, integer *, doublereal *, integer *);
    static integer ioldsd[4];
    extern /* Subroutine */ int dlafts_(char *, integer *, integer *, integer 
	    *, integer *, doublereal *, integer *, doublereal *, integer *, 
	    integer *), dlaset_(char *, integer *, integer *, 
	    doublereal *, doublereal *, doublereal *, integer *), 
	    xerbla_(char *, integer *), dlatmr_(integer *, integer *, 
	    char *, integer *, char *, doublereal *, integer *, doublereal *, 
	    doublereal *, char *, char *, doublereal *, integer *, doublereal 
	    *, doublereal *, integer *, doublereal *, char *, integer *, 
	    integer *, integer *, doublereal *, doublereal *, char *, 
	    doublereal *, integer *, integer *, integer *);
    static doublereal abstol;
    extern /* Subroutine */ int dlasum_(char *, integer *, integer *, integer 
	    *), dlatms_(integer *, integer *, char *, integer *, char 
	    *, doublereal *, integer *, doublereal *, doublereal *, integer *,
	     integer *, char *, doublereal *, integer *, doublereal *, 
	    integer *), dspgvd_(integer *, char *, 
	    char *, integer *, doublereal *, doublereal *, doublereal *, 
	    doublereal *, integer *, doublereal *, integer *, integer *, 
	    integer *, integer *);
    static integer ibuplo, ibtype;
    extern /* Subroutine */ int dsbgvx_(char *, char *, char *, integer *, 
	    integer *, integer *, doublereal *, integer *, doublereal *, 
	    integer *, doublereal *, integer *, doublereal *, doublereal *, 
	    integer *, integer *, doublereal *, integer *, doublereal *, 
	    doublereal *, integer *, doublereal *, integer *, integer *, 
	    integer *), dsygvd_(integer *, char *, 
	    char *, integer *, doublereal *, integer *, doublereal *, integer 
	    *, doublereal *, doublereal *, integer *, integer *, integer *, 
	    integer *);
    static integer ka9, kb9;
    static doublereal rtunfl, rtovfl, ulpinv;
    extern /* Subroutine */ int dspgvx_(integer *, char *, char *, char *, 
	    integer *, doublereal *, doublereal *, doublereal *, doublereal *,
	     integer *, integer *, doublereal *, integer *, doublereal *, 
	    doublereal *, integer *, doublereal *, integer *, integer *, 
	    integer *);
    static integer mtypes, ntestt;
    extern /* Subroutine */ int dsygvx_(integer *, char *, char *, char *, 
	    integer *, doublereal *, integer *, doublereal *, integer *, 
	    doublereal *, doublereal *, integer *, integer *, doublereal *, 
	    integer *, doublereal *, doublereal *, integer *, doublereal *, 
	    integer *, integer *, integer *, integer *);
    static doublereal ulp;

    /* Fortran I/O blocks */
    static cilist io___36 = { 0, 0, 0, fmt_9999, 0 };
    static cilist io___44 = { 0, 0, 0, fmt_9999, 0 };
    static cilist io___45 = { 0, 0, 0, fmt_9999, 0 };
    static cilist io___49 = { 0, 0, 0, fmt_9999, 0 };
    static cilist io___50 = { 0, 0, 0, fmt_9999, 0 };
    static cilist io___51 = { 0, 0, 0, fmt_9999, 0 };
    static cilist io___53 = { 0, 0, 0, fmt_9999, 0 };
    static cilist io___54 = { 0, 0, 0, fmt_9999, 0 };
    static cilist io___55 = { 0, 0, 0, fmt_9999, 0 };
    static cilist io___56 = { 0, 0, 0, fmt_9999, 0 };
    static cilist io___57 = { 0, 0, 0, fmt_9999, 0 };
    static cilist io___58 = { 0, 0, 0, fmt_9999, 0 };
    static cilist io___59 = { 0, 0, 0, fmt_9999, 0 };
    static cilist io___60 = { 0, 0, 0, fmt_9999, 0 };
    static cilist io___61 = { 0, 0, 0, fmt_9999, 0 };
    static cilist io___62 = { 0, 0, 0, fmt_9999, 0 };



#define a_ref(a_1,a_2) a[(a_2)*a_dim1 + a_1]
#define b_ref(a_1,a_2) b[(a_2)*b_dim1 + a_1]
#define ab_ref(a_1,a_2) ab[(a_2)*ab_dim1 + a_1]
#define bb_ref(a_1,a_2) bb[(a_2)*bb_dim1 + a_1]


/*  -- LAPACK test routine (version 3.0) --   
       Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,   
       Courant Institute, Argonne National Lab, and Rice University   
       June 30, 1999   

   ******************************************************************   

       modified August 1997, a new parameter LIWORK is added   
       in the calling sequence.   

       test routine DDGT01 is also modified   

   ******************************************************************   


    Purpose   
    =======   

         DDRVSG checks the real symmetric generalized eigenproblem   
         drivers.   

                 DSYGV computes all eigenvalues and, optionally,   
                 eigenvectors of a real symmetric-definite generalized   
                 eigenproblem.   

                 DSYGVD computes all eigenvalues and, optionally,   
                 eigenvectors of a real symmetric-definite generalized   
                 eigenproblem using a divide and conquer algorithm.   

                 DSYGVX computes selected eigenvalues and, optionally,   
                 eigenvectors of a real symmetric-definite generalized   
                 eigenproblem.   

                 DSPGV computes all eigenvalues and, optionally,   
                 eigenvectors of a real symmetric-definite generalized   
                 eigenproblem in packed storage.   

                 DSPGVD computes all eigenvalues and, optionally,   
                 eigenvectors of a real symmetric-definite generalized   
                 eigenproblem in packed storage using a divide and   
                 conquer algorithm.   

                 DSPGVX computes selected eigenvalues and, optionally,   
                 eigenvectors of a real symmetric-definite generalized   
                 eigenproblem in packed storage.   

                 DSBGV computes all eigenvalues and, optionally,   
                 eigenvectors of a real symmetric-definite banded   
                 generalized eigenproblem.   

                 DSBGVD computes all eigenvalues and, optionally,   
                 eigenvectors of a real symmetric-definite banded   
                 generalized eigenproblem using a divide and conquer   
                 algorithm.   

                 DSBGVX computes selected eigenvalues and, optionally,   
                 eigenvectors of a real symmetric-definite banded   
                 generalized eigenproblem.   

         When DDRVSG is called, a number of matrix "sizes" ("n's") and a   
         number of matrix "types" are specified.  For each size ("n")   
         and each type of matrix, one matrix A of the given type will be   
         generated; a random well-conditioned matrix B is also generated   
         and the pair (A,B) is used to test the drivers.   

         For each pair (A,B), the following tests are performed:   

         (1) DSYGV with ITYPE = 1 and UPLO ='U':   

                 | A Z - B Z D | / ( |A| |Z| n ulp )   

         (2) as (1) but calling DSPGV   
         (3) as (1) but calling DSBGV   
         (4) as (1) but with UPLO = 'L'   
         (5) as (4) but calling DSPGV   
         (6) as (4) but calling DSBGV   

         (7) DSYGV with ITYPE = 2 and UPLO ='U':   

                 | A B Z - Z D | / ( |A| |Z| n ulp )   

         (8) as (7) but calling DSPGV   
         (9) as (7) but with UPLO = 'L'   
         (10) as (9) but calling DSPGV   

         (11) DSYGV with ITYPE = 3 and UPLO ='U':   

                 | B A Z - Z D | / ( |A| |Z| n ulp )   

         (12) as (11) but calling DSPGV   
         (13) as (11) but with UPLO = 'L'   
         (14) as (13) but calling DSPGV   

         DSYGVD, DSPGVD and DSBGVD performed the same 14 tests.   

         DSYGVX, DSPGVX and DSBGVX performed the above 14 tests with   
         the parameter RANGE = 'A', 'N' and 'I', respectively.   

         The "sizes" are specified by an array NN(1:NSIZES); the value   
         of each element NN(j) specifies one size.   
         The "types" are specified by a logical array DOTYPE( 1:NTYPES );   
         if DOTYPE(j) is .TRUE., then matrix type "j" will be generated.   
         This type is used for the matrix A which has half-bandwidth KA.   
         B is generated as a well-conditioned positive definite matrix   
         with half-bandwidth KB (<= KA).   
         Currently, the list of possible types for A is:   

         (1)  The zero matrix.   
         (2)  The identity matrix.   

         (3)  A diagonal matrix with evenly spaced entries   
              1, ..., ULP  and random signs.   
              (ULP = (first number larger than 1) - 1 )   
         (4)  A diagonal matrix with geometrically spaced entries   
              1, ..., ULP  and random signs.   
         (5)  A diagonal matrix with "clustered" entries   
              1, ULP, ..., ULP and random signs.   

         (6)  Same as (4), but multiplied by SQRT( overflow threshold )   
         (7)  Same as (4), but multiplied by SQRT( underflow threshold )   

         (8)  A matrix of the form  U* D U, where U is orthogonal and   
              D has evenly spaced entries 1, ..., ULP with random signs   
              on the diagonal.   

         (9)  A matrix of the form  U* D U, where U is orthogonal and   
              D has geometrically spaced entries 1, ..., ULP with random   
              signs on the diagonal.   

         (10) A matrix of the form  U* D U, where U is orthogonal and   
              D has "clustered" entries 1, ULP,..., ULP with random   
              signs on the diagonal.   

         (11) Same as (8), but multiplied by SQRT( overflow threshold )   
         (12) Same as (8), but multiplied by SQRT( underflow threshold )   

         (13) symmetric matrix with random entries chosen from (-1,1).   
         (14) Same as (13), but multiplied by SQRT( overflow threshold )   
         (15) Same as (13), but multiplied by SQRT( underflow threshold)   

         (16) Same as (8), but with KA = 1 and KB = 1   
         (17) Same as (8), but with KA = 2 and KB = 1   
         (18) Same as (8), but with KA = 2 and KB = 2   
         (19) Same as (8), but with KA = 3 and KB = 1   
         (20) Same as (8), but with KA = 3 and KB = 2   
         (21) Same as (8), but with KA = 3 and KB = 3   

    Arguments   
    =========   

    NSIZES  INTEGER   
            The number of sizes of matrices to use.  If it is zero,   
            DDRVSG does nothing.  It must be at least zero.   
            Not modified.   

    NN      INTEGER array, dimension (NSIZES)   
            An array containing the sizes to be used for the matrices.   
            Zero values will be skipped.  The values must be at least   
            zero.   
            Not modified.   

    NTYPES  INTEGER   
            The number of elements in DOTYPE.   If it is zero, DDRVSG   
            does nothing.  It must be at least zero.  If it is MAXTYP+1   
            and NSIZES is 1, then an additional type, MAXTYP+1 is   
            defined, which is to use whatever matrix is in A.  This   
            is only useful if DOTYPE(1:MAXTYP) is .FALSE. and   
            DOTYPE(MAXTYP+1) is .TRUE. .   
            Not modified.   

    DOTYPE  LOGICAL array, dimension (NTYPES)   
            If DOTYPE(j) is .TRUE., then for each size in NN a   
            matrix of that size and of type j will be generated.   
            If NTYPES is smaller than the maximum number of types   
            defined (PARAMETER MAXTYP), then types NTYPES+1 through   
            MAXTYP will not be generated.  If NTYPES is larger   
            than MAXTYP, DOTYPE(MAXTYP+1) through DOTYPE(NTYPES)   
            will be ignored.   
            Not modified.   

    ISEED   INTEGER array, dimension (4)   
            On entry ISEED specifies the seed of the random number   
            generator. The array elements should be between 0 and 4095;   
            if not they will be reduced mod 4096.  Also, ISEED(4) must   
            be odd.  The random number generator uses a linear   
            congruential sequence limited to small integers, and so   
            should produce machine independent random numbers. The   
            values of ISEED are changed on exit, and can be used in the   
            next call to DDRVSG to continue the same random number   
            sequence.   
            Modified.   

    THRESH  DOUBLE PRECISION   
            A test will count as "failed" if the "error", computed as   
            described above, exceeds THRESH.  Note that the error   
            is scaled to be O(1), so THRESH should be a reasonably   
            small multiple of 1, e.g., 10 or 100.  In particular,   
            it should not depend on the precision (single vs. double)   
            or the size of the matrix.  It must be at least zero.   
            Not modified.   

    NOUNIT  INTEGER   
            The FORTRAN unit number for printing out error messages   
            (e.g., if a routine returns IINFO not equal to 0.)   
            Not modified.   

    A       DOUBLE PRECISION array, dimension (LDA , max(NN))   
            Used to hold the matrix whose eigenvalues are to be   
            computed.  On exit, A contains the last matrix actually   
            used.   
            Modified.   

    LDA     INTEGER   
            The leading dimension of A and AB.  It must be at   
            least 1 and at least max( NN ).   
            Not modified.   

    B       DOUBLE PRECISION array, dimension (LDB , max(NN))   
            Used to hold the symmetric positive definite matrix for   
            the generailzed problem.   
            On exit, B contains the last matrix actually   
            used.   
            Modified.   

    LDB     INTEGER   
            The leading dimension of B and BB.  It must be at   
            least 1 and at least max( NN ).   
            Not modified.   

    D       DOUBLE PRECISION array, dimension (max(NN))   
            The eigenvalues of A. On exit, the eigenvalues in D   
            correspond with the matrix in A.   
            Modified.   

    Z       DOUBLE PRECISION array, dimension (LDZ, max(NN))   
            The matrix of eigenvectors.   
            Modified.   

    LDZ     INTEGER   
            The leading dimension of Z.  It must be at least 1 and   
            at least max( NN ).   
            Not modified.   

    AB      DOUBLE PRECISION array, dimension (LDA, max(NN))   
            Workspace.   
            Modified.   

    BB      DOUBLE PRECISION array, dimension (LDB, max(NN))   
            Workspace.   
            Modified.   

    AP      DOUBLE PRECISION array, dimension (max(NN)**2)   
            Workspace.   
            Modified.   

    BP      DOUBLE PRECISION array, dimension (max(NN)**2)   
            Workspace.   
            Modified.   

    WORK    DOUBLE PRECISION array, dimension (NWORK)   
            Workspace.   
            Modified.   

    NWORK   INTEGER   
            The number of entries in WORK.  This must be at least   
            1+5*N+2*N*lg(N)+3*N**2 where N = max( NN(j) ) and   
            lg( N ) = smallest integer k such that 2**k >= N.   
            Not modified.   

    IWORK   INTEGER array, dimension (LIWORK)   
            Workspace.   
            Modified.   

    LIWORK  INTEGER   
            The number of entries in WORK.  This must be at least 6*N.   
            Not modified.   

    RESULT  DOUBLE PRECISION array, dimension (70)   
            The values computed by the 70 tests described above.   
            Modified.   

    INFO    INTEGER   
            If 0, then everything ran OK.   
             -1: NSIZES < 0   
             -2: Some NN(j) < 0   
             -3: NTYPES < 0   
             -5: THRESH < 0   
             -9: LDA < 1 or LDA < NMAX, where NMAX is max( NN(j) ).   
            -16: LDZ < 1 or LDZ < NMAX.   
            -21: NWORK too small.   
            -23: LIWORK too small.   
            If  DLATMR, SLATMS, DSYGV, DSPGV, DSBGV, SSYGVD, SSPGVD,   
                DSBGVD, DSYGVX, DSPGVX or SSBGVX returns an error code,   
                the absolute value of it is returned.   
            Modified.   

   ----------------------------------------------------------------------   

         Some Local Variables and Parameters:   
         ---- ----- --------- --- ----------   
         ZERO, ONE       Real 0 and 1.   
         MAXTYP          The number of types defined.   
         NTEST           The number of tests that have been run   
                         on this matrix.   
         NTESTT          The total number of tests for this call.   
         NMAX            Largest value in NN.   
         NMATS           The number of matrices generated so far.   
         NERRS           The number of tests which have exceeded THRESH   
                         so far (computed by DLAFTS).   
         COND, IMODE     Values to be passed to the matrix generators.   
         ANORM           Norm of A; passed to matrix generators.   

         OVFL, UNFL      Overflow and underflow thresholds.   
         ULP, ULPINV     Finest relative precision and its inverse.   
         RTOVFL, RTUNFL  Square roots of the previous 2 values.   
                 The following four arrays decode JTYPE:   
         KTYPE(j)        The general type (1-10) for type "j".   
         KMODE(j)        The MODE value to be passed to the matrix   
                         generator for type "j".   
         KMAGN(j)        The order of magnitude ( O(1),   
                         O(overflow^(1/2) ), O(underflow^(1/2) )   

    =====================================================================   

       Parameter adjustments */
    --nn;
    --dotype;
    --iseed;
    ab_dim1 = *lda;
    ab_offset = 1 + ab_dim1 * 1;
    ab -= ab_offset;
    a_dim1 = *lda;
    a_offset = 1 + a_dim1 * 1;
    a -= a_offset;
    bb_dim1 = *ldb;
    bb_offset = 1 + bb_dim1 * 1;
    bb -= bb_offset;
    b_dim1 = *ldb;
    b_offset = 1 + b_dim1 * 1;
    b -= b_offset;
    --d__;
    z_dim1 = *ldz;
    z_offset = 1 + z_dim1 * 1;
    z__ -= z_offset;
    --ap;
    --bp;
    --work;
    --iwork;
    --result;

    /* Function Body   

       1)      Check for errors */

    ntestt = 0;
    *info = 0;

    badnn = FALSE_;
    nmax = 0;
    i__1 = *nsizes;
    for (j = 1; j <= i__1; ++j) {
/* Computing MAX */
	i__2 = nmax, i__3 = nn[j];
	nmax = max(i__2,i__3);
	if (nn[j] < 0) {
	    badnn = TRUE_;
	}
/* L10: */
    }

/*     Check for errors */

    if (*nsizes < 0) {
	*info = -1;
    } else if (badnn) {
	*info = -2;
    } else if (*ntypes < 0) {
	*info = -3;
    } else if (*lda <= 1 || *lda < nmax) {
	*info = -9;
    } else if (*ldz <= 1 || *ldz < nmax) {
	*info = -16;
    } else /* if(complicated condition) */ {
/* Computing 2nd power */
	i__1 = max(nmax,3);
	if (i__1 * i__1 << 1 > *nwork) {
	    *info = -21;
	} else /* if(complicated condition) */ {
/* Computing 2nd power */
	    i__1 = max(nmax,3);
	    if (i__1 * i__1 << 1 > *liwork) {
		*info = -23;
	    }
	}
    }

    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("DDRVSG", &i__1);
	return 0;
    }

/*     Quick return if possible */

    if (*nsizes == 0 || *ntypes == 0) {
	return 0;
    }

/*     More Important constants */

    unfl = dlamch_("Safe minimum");
    ovfl = dlamch_("Overflow");
    dlabad_(&unfl, &ovfl);
    ulp = dlamch_("Epsilon") * dlamch_("Base");
    ulpinv = 1. / ulp;
    rtunfl = sqrt(unfl);
    rtovfl = sqrt(ovfl);

    for (i__ = 1; i__ <= 4; ++i__) {
	iseed2[i__ - 1] = iseed[i__];
/* L20: */
    }

/*     Loop over sizes, types */

    nerrs = 0;
    nmats = 0;

    i__1 = *nsizes;
    for (jsize = 1; jsize <= i__1; ++jsize) {
	n = nn[jsize];
	aninv = 1. / (doublereal) max(1,n);

	if (*nsizes != 1) {
	    mtypes = min(21,*ntypes);
	} else {
	    mtypes = min(22,*ntypes);
	}

	ka9 = 0;
	kb9 = 0;
	i__2 = mtypes;
	for (jtype = 1; jtype <= i__2; ++jtype) {
	    if (! dotype[jtype]) {
		goto L640;
	    }
	    ++nmats;
	    ntest = 0;

	    for (j = 1; j <= 4; ++j) {
		ioldsd[j - 1] = iseed[j];
/* L30: */
	    }

/*           2)      Compute "A"   

                     Control parameters:   

                 KMAGN  KMODE        KTYPE   
             =1  O(1)   clustered 1  zero   
             =2  large  clustered 2  identity   
             =3  small  exponential  (none)   
             =4         arithmetic   diagonal, w/ eigenvalues   
             =5         random log   hermitian, w/ eigenvalues   
             =6         random       (none)   
             =7                      random diagonal   
             =8                      random hermitian   
             =9                      banded, w/ eigenvalues */

	    if (mtypes > 21) {
		goto L90;
	    }

	    itype = ktype[jtype - 1];
	    imode = kmode[jtype - 1];

/*           Compute norm */

	    switch (kmagn[jtype - 1]) {
		case 1:  goto L40;
		case 2:  goto L50;
		case 3:  goto L60;
	    }

L40:
	    anorm = 1.;
	    goto L70;

L50:
	    anorm = rtovfl * ulp * aninv;
	    goto L70;

L60:
	    anorm = rtunfl * n * ulpinv;
	    goto L70;

L70:

	    iinfo = 0;
	    cond = ulpinv;

/*           Special Matrices -- Identity & Jordan block */

	    if (itype == 1) {

/*              Zero */

		ka = 0;
		kb = 0;
		dlaset_("Full", lda, &n, &c_b18, &c_b18, &a[a_offset], lda);

	    } else if (itype == 2) {

/*              Identity */

		ka = 0;
		kb = 0;
		dlaset_("Full", lda, &n, &c_b18, &c_b18, &a[a_offset], lda);
		i__3 = n;
		for (jcol = 1; jcol <= i__3; ++jcol) {
		    a_ref(jcol, jcol) = anorm;
/* L80: */
		}

	    } else if (itype == 4) {

/*              Diagonal Matrix, [Eigen]values Specified */

		ka = 0;
		kb = 0;
		dlatms_(&n, &n, "S", &iseed[1], "S", &work[1], &imode, &cond, 
			&anorm, &c__0, &c__0, "N", &a[a_offset], lda, &work[n 
			+ 1], &iinfo);

	    } else if (itype == 5) {

/*              symmetric, eigenvalues specified   

   Computing MAX */
		i__3 = 0, i__4 = n - 1;
		ka = max(i__3,i__4);
		kb = ka;
		dlatms_(&n, &n, "S", &iseed[1], "S", &work[1], &imode, &cond, 
			&anorm, &n, &n, "N", &a[a_offset], lda, &work[n + 1], 
			&iinfo);

	    } else if (itype == 7) {

/*              Diagonal, random eigenvalues */

		ka = 0;
		kb = 0;
		dlatmr_(&n, &n, "S", &iseed[1], "S", &work[1], &c__6, &c_b35, 
			&c_b35, "T", "N", &work[n + 1], &c__1, &c_b35, &work[(
			n << 1) + 1], &c__1, &c_b35, "N", idumma, &c__0, &
			c__0, &c_b18, &anorm, "NO", &a[a_offset], lda, &iwork[
			1], &iinfo);

	    } else if (itype == 8) {

/*              symmetric, random eigenvalues   

   Computing MAX */
		i__3 = 0, i__4 = n - 1;
		ka = max(i__3,i__4);
		kb = ka;
		dlatmr_(&n, &n, "S", &iseed[1], "H", &work[1], &c__6, &c_b35, 
			&c_b35, "T", "N", &work[n + 1], &c__1, &c_b35, &work[(
			n << 1) + 1], &c__1, &c_b35, "N", idumma, &n, &n, &
			c_b18, &anorm, "NO", &a[a_offset], lda, &iwork[1], &
			iinfo);

	    } else if (itype == 9) {

/*              symmetric banded, eigenvalues specified   

                The following values are used for the half-bandwidths:   

                  ka = 1   kb = 1   
                  ka = 2   kb = 1   
                  ka = 2   kb = 2   
                  ka = 3   kb = 1   
                  ka = 3   kb = 2   
                  ka = 3   kb = 3 */

		++kb9;
		if (kb9 > ka9) {
		    ++ka9;
		    kb9 = 1;
		}
/* Computing MAX   
   Computing MIN */
		i__5 = n - 1;
		i__3 = 0, i__4 = min(i__5,ka9);
		ka = max(i__3,i__4);
/* Computing MAX   
   Computing MIN */
		i__5 = n - 1;
		i__3 = 0, i__4 = min(i__5,kb9);
		kb = max(i__3,i__4);
		dlatms_(&n, &n, "S", &iseed[1], "S", &work[1], &imode, &cond, 
			&anorm, &ka, &ka, "N", &a[a_offset], lda, &work[n + 1]
			, &iinfo);

	    } else {

		iinfo = 1;
	    }

	    if (iinfo != 0) {
		io___36.ciunit = *nounit;
		s_wsfe(&io___36);
		do_fio(&c__1, "Generator", (ftnlen)9);
		do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer));
		do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer));
		e_wsfe();
		*info = abs(iinfo);
		return 0;
	    }

L90:

	    abstol = unfl + unfl;
	    if (n <= 1) {
		il = 1;
		iu = n;
	    } else {
		il = (integer) ((n - 1) * dlarnd_(&c__1, iseed2) + 1);
		iu = (integer) ((n - 1) * dlarnd_(&c__1, iseed2) + 1);
		if (il > iu) {
		    itemp = il;
		    il = iu;
		    iu = itemp;
		}
	    }

/*           3) Call DSYGV, DSPGV, DSBGV, SSYGVD, SSPGVD, SSBGVD,   
                DSYGVX, DSPGVX, and DSBGVX, do tests.   

             loop over the three generalized problems   
                   IBTYPE = 1: A*x = (lambda)*B*x   
                   IBTYPE = 2: A*B*x = (lambda)*x   
                   IBTYPE = 3: B*A*x = (lambda)*x */

	    for (ibtype = 1; ibtype <= 3; ++ibtype) {

/*              loop over the setting UPLO */

		for (ibuplo = 1; ibuplo <= 2; ++ibuplo) {
		    if (ibuplo == 1) {
			*(unsigned char *)uplo = 'U';
		    }
		    if (ibuplo == 2) {
			*(unsigned char *)uplo = 'L';
		    }

/*                 Generate random well-conditioned positive definite   
                   matrix B, of bandwidth not greater than that of A. */

		    dlatms_(&n, &n, "U", &iseed[1], "P", &work[1], &c__5, &
			    c_b82, &c_b35, &kb, &kb, uplo, &b[b_offset], ldb, 
			    &work[n + 1], &iinfo);

/*                 Test DSYGV */

		    ++ntest;

		    dlacpy_(" ", &n, &n, &a[a_offset], lda, &z__[z_offset], 
			    ldz);
		    dlacpy_(uplo, &n, &n, &b[b_offset], ldb, &bb[bb_offset], 
			    ldb);

		    dsygv_(&ibtype, "V", uplo, &n, &z__[z_offset], ldz, &bb[
			    bb_offset], ldb, &d__[1], &work[1], nwork, &iinfo);
		    if (iinfo != 0) {
			io___44.ciunit = *nounit;
			s_wsfe(&io___44);
/* Writing concatenation */
			i__6[0] = 8, a__1[0] = "DSYGV(V,";
			i__6[1] = 1, a__1[1] = uplo;
			i__6[2] = 1, a__1[2] = ")";
			s_cat(ch__1, a__1, i__6, &c__3, (ftnlen)10);
			do_fio(&c__1, ch__1, (ftnlen)10);
			do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer))
				;
			do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
			do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer))
				;
			do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(
				integer));
			e_wsfe();
			*info = abs(iinfo);
			if (iinfo < 0) {
			    return 0;
			} else {
			    result[ntest] = ulpinv;
			    goto L100;
			}
		    }

/*                 Do Test */

		    dsgt01_(&ibtype, uplo, &n, &n, &a[a_offset], lda, &b[
			    b_offset], ldb, &z__[z_offset], ldz, &d__[1], &
			    work[1], &result[ntest]);

/*                 Test DSYGVD */

		    ++ntest;

		    dlacpy_(" ", &n, &n, &a[a_offset], lda, &z__[z_offset], 
			    ldz);
		    dlacpy_(uplo, &n, &n, &b[b_offset], ldb, &bb[bb_offset], 
			    ldb);

		    dsygvd_(&ibtype, "V", uplo, &n, &z__[z_offset], ldz, &bb[
			    bb_offset], ldb, &d__[1], &work[1], nwork, &iwork[
			    1], liwork, &iinfo);
		    if (iinfo != 0) {
			io___45.ciunit = *nounit;
			s_wsfe(&io___45);
/* Writing concatenation */
			i__6[0] = 9, a__1[0] = "DSYGVD(V,";
			i__6[1] = 1, a__1[1] = uplo;
			i__6[2] = 1, a__1[2] = ")";
			s_cat(ch__2, a__1, i__6, &c__3, (ftnlen)11);
			do_fio(&c__1, ch__2, (ftnlen)11);
			do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer))
				;
			do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
			do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer))
				;
			do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(
				integer));
			e_wsfe();
			*info = abs(iinfo);
			if (iinfo < 0) {
			    return 0;
			} else {
			    result[ntest] = ulpinv;
			    goto L100;
			}
		    }

/*                 Do Test */

		    dsgt01_(&ibtype, uplo, &n, &n, &a[a_offset], lda, &b[
			    b_offset], ldb, &z__[z_offset], ldz, &d__[1], &
			    work[1], &result[ntest]);

/*                 Test DSYGVX */

		    ++ntest;

		    dlacpy_(" ", &n, &n, &a[a_offset], lda, &ab[ab_offset], 
			    lda);
		    dlacpy_(uplo, &n, &n, &b[b_offset], ldb, &bb[bb_offset], 
			    ldb);

		    dsygvx_(&ibtype, "V", "A", uplo, &n, &ab[ab_offset], lda, 
			    &bb[bb_offset], ldb, &vl, &vu, &il, &iu, &abstol, 
			    &m, &d__[1], &z__[z_offset], ldz, &work[1], nwork,
			     &iwork[n + 1], &iwork[1], &iinfo);
		    if (iinfo != 0) {
			io___49.ciunit = *nounit;
			s_wsfe(&io___49);
/* Writing concatenation */
			i__6[0] = 10, a__1[0] = "DSYGVX(V,A";
			i__6[1] = 1, a__1[1] = uplo;
			i__6[2] = 1, a__1[2] = ")";
			s_cat(ch__3, a__1, i__6, &c__3, (ftnlen)12);
			do_fio(&c__1, ch__3, (ftnlen)12);
			do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer))
				;
			do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
			do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer))
				;
			do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(
				integer));
			e_wsfe();
			*info = abs(iinfo);
			if (iinfo < 0) {
			    return 0;
			} else {
			    result[ntest] = ulpinv;
			    goto L100;
			}
		    }

/*                 Do Test */

		    dsgt01_(&ibtype, uplo, &n, &n, &a[a_offset], lda, &b[
			    b_offset], ldb, &z__[z_offset], ldz, &d__[1], &
			    work[1], &result[ntest]);

		    ++ntest;

		    dlacpy_(" ", &n, &n, &a[a_offset], lda, &ab[ab_offset], 
			    lda);
		    dlacpy_(uplo, &n, &n, &b[b_offset], ldb, &bb[bb_offset], 
			    ldb);

/*                 since we do not know the exact eigenvalues of this   
                   eigenpair, we just set VL and VU as constants.   
                   It is quite possible that there are no eigenvalues   
                   in this interval. */

		    vl = 0.;
		    vu = anorm;
		    dsygvx_(&ibtype, "V", "V", uplo, &n, &ab[ab_offset], lda, 
			    &bb[bb_offset], ldb, &vl, &vu, &il, &iu, &abstol, 
			    &m, &d__[1], &z__[z_offset], ldz, &work[1], nwork,
			     &iwork[n + 1], &iwork[1], &iinfo);
		    if (iinfo != 0) {
			io___50.ciunit = *nounit;
			s_wsfe(&io___50);
/* Writing concatenation */
			i__6[0] = 11, a__1[0] = "DSYGVX(V,V,";
			i__6[1] = 1, a__1[1] = uplo;
			i__6[2] = 1, a__1[2] = ")";
			s_cat(ch__4, a__1, i__6, &c__3, (ftnlen)13);
			do_fio(&c__1, ch__4, (ftnlen)13);
			do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer))
				;
			do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
			do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer))
				;
			do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(
				integer));
			e_wsfe();
			*info = abs(iinfo);
			if (iinfo < 0) {
			    return 0;
			} else {
			    result[ntest] = ulpinv;
			    goto L100;
			}
		    }

/*                 Do Test */

		    dsgt01_(&ibtype, uplo, &n, &m, &a[a_offset], lda, &b[
			    b_offset], ldb, &z__[z_offset], ldz, &d__[1], &
			    work[1], &result[ntest]);

		    ++ntest;

		    dlacpy_(" ", &n, &n, &a[a_offset], lda, &ab[ab_offset], 
			    lda);
		    dlacpy_(uplo, &n, &n, &b[b_offset], ldb, &bb[bb_offset], 
			    ldb);

		    dsygvx_(&ibtype, "V", "I", uplo, &n, &ab[ab_offset], lda, 
			    &bb[bb_offset], ldb, &vl, &vu, &il, &iu, &abstol, 
			    &m, &d__[1], &z__[z_offset], ldz, &work[1], nwork,
			     &iwork[n + 1], &iwork[1], &iinfo);
		    if (iinfo != 0) {
			io___51.ciunit = *nounit;
			s_wsfe(&io___51);
/* Writing concatenation */
			i__6[0] = 11, a__1[0] = "DSYGVX(V,I,";
			i__6[1] = 1, a__1[1] = uplo;
			i__6[2] = 1, a__1[2] = ")";
			s_cat(ch__4, a__1, i__6, &c__3, (ftnlen)13);
			do_fio(&c__1, ch__4, (ftnlen)13);
			do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer))
				;
			do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
			do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer))
				;
			do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(
				integer));
			e_wsfe();
			*info = abs(iinfo);
			if (iinfo < 0) {
			    return 0;
			} else {
			    result[ntest] = ulpinv;
			    goto L100;
			}
		    }

/*                 Do Test */

		    dsgt01_(&ibtype, uplo, &n, &m, &a[a_offset], lda, &b[
			    b_offset], ldb, &z__[z_offset], ldz, &d__[1], &
			    work[1], &result[ntest]);

L100:

/*                 Test DSPGV */

		    ++ntest;

/*                 Copy the matrices into packed storage. */

		    if (lsame_(uplo, "U")) {
			ij = 1;
			i__3 = n;
			for (j = 1; j <= i__3; ++j) {
			    i__4 = j;
			    for (i__ = 1; i__ <= i__4; ++i__) {
				ap[ij] = a_ref(i__, j);
				bp[ij] = b_ref(i__, j);
				++ij;
/* L110: */
			    }
/* L120: */
			}
		    } else {
			ij = 1;
			i__3 = n;
			for (j = 1; j <= i__3; ++j) {
			    i__4 = n;
			    for (i__ = j; i__ <= i__4; ++i__) {
				ap[ij] = a_ref(i__, j);
				bp[ij] = b_ref(i__, j);
				++ij;
/* L130: */
			    }
/* L140: */
			}
		    }

		    dspgv_(&ibtype, "V", uplo, &n, &ap[1], &bp[1], &d__[1], &
			    z__[z_offset], ldz, &work[1], &iinfo);
		    if (iinfo != 0) {
			io___53.ciunit = *nounit;
			s_wsfe(&io___53);
/* Writing concatenation */
			i__6[0] = 8, a__1[0] = "DSPGV(V,";
			i__6[1] = 1, a__1[1] = uplo;
			i__6[2] = 1, a__1[2] = ")";
			s_cat(ch__1, a__1, i__6, &c__3, (ftnlen)10);
			do_fio(&c__1, ch__1, (ftnlen)10);
			do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer))
				;
			do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
			do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer))
				;
			do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(
				integer));
			e_wsfe();
			*info = abs(iinfo);
			if (iinfo < 0) {
			    return 0;
			} else {
			    result[ntest] = ulpinv;
			    goto L310;
			}
		    }

/*                 Do Test */

		    dsgt01_(&ibtype, uplo, &n, &n, &a[a_offset], lda, &b[
			    b_offset], ldb, &z__[z_offset], ldz, &d__[1], &
			    work[1], &result[ntest]);

/*                 Test DSPGVD */

		    ++ntest;

/*                 Copy the matrices into packed storage. */

		    if (lsame_(uplo, "U")) {
			ij = 1;
			i__3 = n;
			for (j = 1; j <= i__3; ++j) {
			    i__4 = j;
			    for (i__ = 1; i__ <= i__4; ++i__) {
				ap[ij] = a_ref(i__, j);
				bp[ij] = b_ref(i__, j);
				++ij;
/* L150: */
			    }
/* L160: */
			}
		    } else {
			ij = 1;
			i__3 = n;
			for (j = 1; j <= i__3; ++j) {
			    i__4 = n;
			    for (i__ = j; i__ <= i__4; ++i__) {
				ap[ij] = a_ref(i__, j);
				bp[ij] = b_ref(i__, j);
				++ij;
/* L170: */
			    }
/* L180: */
			}
		    }

		    dspgvd_(&ibtype, "V", uplo, &n, &ap[1], &bp[1], &d__[1], &
			    z__[z_offset], ldz, &work[1], nwork, &iwork[1], 
			    liwork, &iinfo);
		    if (iinfo != 0) {
			io___54.ciunit = *nounit;
			s_wsfe(&io___54);
/* Writing concatenation */
			i__6[0] = 9, a__1[0] = "DSPGVD(V,";
			i__6[1] = 1, a__1[1] = uplo;
			i__6[2] = 1, a__1[2] = ")";
			s_cat(ch__2, a__1, i__6, &c__3, (ftnlen)11);
			do_fio(&c__1, ch__2, (ftnlen)11);
			do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer))
				;
			do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
			do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer))
				;
			do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(
				integer));
			e_wsfe();
			*info = abs(iinfo);
			if (iinfo < 0) {
			    return 0;
			} else {
			    result[ntest] = ulpinv;
			    goto L310;
			}
		    }

/*                 Do Test */

		    dsgt01_(&ibtype, uplo, &n, &n, &a[a_offset], lda, &b[
			    b_offset], ldb, &z__[z_offset], ldz, &d__[1], &
			    work[1], &result[ntest]);

/*                 Test DSPGVX */

		    ++ntest;

/*                 Copy the matrices into packed storage. */

		    if (lsame_(uplo, "U")) {
			ij = 1;
			i__3 = n;
			for (j = 1; j <= i__3; ++j) {
			    i__4 = j;
			    for (i__ = 1; i__ <= i__4; ++i__) {
				ap[ij] = a_ref(i__, j);
				bp[ij] = b_ref(i__, j);
				++ij;
/* L190: */
			    }
/* L200: */
			}
		    } else {
			ij = 1;
			i__3 = n;
			for (j = 1; j <= i__3; ++j) {
			    i__4 = n;
			    for (i__ = j; i__ <= i__4; ++i__) {
				ap[ij] = a_ref(i__, j);
				bp[ij] = b_ref(i__, j);
				++ij;
/* L210: */
			    }
/* L220: */
			}
		    }

		    dspgvx_(&ibtype, "V", "A", uplo, &n, &ap[1], &bp[1], &vl, 
			    &vu, &il, &iu, &abstol, &m, &d__[1], &z__[
			    z_offset], ldz, &work[1], &iwork[n + 1], &iwork[1]
			    , info);
		    if (iinfo != 0) {
			io___55.ciunit = *nounit;
			s_wsfe(&io___55);
/* Writing concatenation */
			i__6[0] = 10, a__1[0] = "DSPGVX(V,A";
			i__6[1] = 1, a__1[1] = uplo;
			i__6[2] = 1, a__1[2] = ")";
			s_cat(ch__3, a__1, i__6, &c__3, (ftnlen)12);
			do_fio(&c__1, ch__3, (ftnlen)12);
			do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer))
				;
			do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
			do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer))
				;
			do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(
				integer));
			e_wsfe();
			*info = abs(iinfo);
			if (iinfo < 0) {
			    return 0;
			} else {
			    result[ntest] = ulpinv;
			    goto L310;
			}
		    }

/*                 Do Test */

		    dsgt01_(&ibtype, uplo, &n, &m, &a[a_offset], lda, &b[
			    b_offset], ldb, &z__[z_offset], ldz, &d__[1], &
			    work[1], &result[ntest]);

		    ++ntest;

/*                 Copy the matrices into packed storage. */

		    if (lsame_(uplo, "U")) {
			ij = 1;
			i__3 = n;
			for (j = 1; j <= i__3; ++j) {
			    i__4 = j;
			    for (i__ = 1; i__ <= i__4; ++i__) {
				ap[ij] = a_ref(i__, j);
				bp[ij] = b_ref(i__, j);
				++ij;
/* L230: */
			    }
/* L240: */
			}
		    } else {
			ij = 1;
			i__3 = n;
			for (j = 1; j <= i__3; ++j) {
			    i__4 = n;
			    for (i__ = j; i__ <= i__4; ++i__) {
				ap[ij] = a_ref(i__, j);
				bp[ij] = b_ref(i__, j);
				++ij;
/* L250: */
			    }
/* L260: */
			}
		    }

		    vl = 0.;
		    vu = anorm;
		    dspgvx_(&ibtype, "V", "V", uplo, &n, &ap[1], &bp[1], &vl, 
			    &vu, &il, &iu, &abstol, &m, &d__[1], &z__[
			    z_offset], ldz, &work[1], &iwork[n + 1], &iwork[1]
			    , info);
		    if (iinfo != 0) {
			io___56.ciunit = *nounit;
			s_wsfe(&io___56);
/* Writing concatenation */
			i__6[0] = 10, a__1[0] = "DSPGVX(V,V";
			i__6[1] = 1, a__1[1] = uplo;
			i__6[2] = 1, a__1[2] = ")";
			s_cat(ch__3, a__1, i__6, &c__3, (ftnlen)12);
			do_fio(&c__1, ch__3, (ftnlen)12);
			do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer))
				;
			do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
			do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer))
				;
			do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(
				integer));
			e_wsfe();
			*info = abs(iinfo);
			if (iinfo < 0) {
			    return 0;
			} else {
			    result[ntest] = ulpinv;
			    goto L310;
			}
		    }

/*                 Do Test */

		    dsgt01_(&ibtype, uplo, &n, &m, &a[a_offset], lda, &b[
			    b_offset], ldb, &z__[z_offset], ldz, &d__[1], &
			    work[1], &result[ntest]);

		    ++ntest;

/*                 Copy the matrices into packed storage. */

		    if (lsame_(uplo, "U")) {
			ij = 1;
			i__3 = n;
			for (j = 1; j <= i__3; ++j) {
			    i__4 = j;
			    for (i__ = 1; i__ <= i__4; ++i__) {
				ap[ij] = a_ref(i__, j);
				bp[ij] = b_ref(i__, j);
				++ij;
/* L270: */
			    }
/* L280: */
			}
		    } else {
			ij = 1;
			i__3 = n;
			for (j = 1; j <= i__3; ++j) {
			    i__4 = n;
			    for (i__ = j; i__ <= i__4; ++i__) {
				ap[ij] = a_ref(i__, j);
				bp[ij] = b_ref(i__, j);
				++ij;
/* L290: */
			    }
/* L300: */
			}
		    }

		    dspgvx_(&ibtype, "V", "I", uplo, &n, &ap[1], &bp[1], &vl, 
			    &vu, &il, &iu, &abstol, &m, &d__[1], &z__[
			    z_offset], ldz, &work[1], &iwork[n + 1], &iwork[1]
			    , info);
		    if (iinfo != 0) {
			io___57.ciunit = *nounit;
			s_wsfe(&io___57);
/* Writing concatenation */
			i__6[0] = 10, a__1[0] = "DSPGVX(V,I";
			i__6[1] = 1, a__1[1] = uplo;
			i__6[2] = 1, a__1[2] = ")";
			s_cat(ch__3, a__1, i__6, &c__3, (ftnlen)12);
			do_fio(&c__1, ch__3, (ftnlen)12);
			do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer))
				;
			do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
			do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer))
				;
			do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(
				integer));
			e_wsfe();
			*info = abs(iinfo);
			if (iinfo < 0) {
			    return 0;
			} else {
			    result[ntest] = ulpinv;
			    goto L310;
			}
		    }

/*                 Do Test */

		    dsgt01_(&ibtype, uplo, &n, &m, &a[a_offset], lda, &b[
			    b_offset], ldb, &z__[z_offset], ldz, &d__[1], &
			    work[1], &result[ntest]);

L310:

		    if (ibtype == 1) {

/*                    TEST DSBGV */

			++ntest;

/*                    Copy the matrices into band storage. */

			if (lsame_(uplo, "U")) {
			    i__3 = n;
			    for (j = 1; j <= i__3; ++j) {
/* Computing MAX */
				i__4 = 1, i__5 = j - ka;
				i__7 = j;
				for (i__ = max(i__4,i__5); i__ <= i__7; ++i__)
					 {
				    ab_ref(ka + 1 + i__ - j, j) = a_ref(i__, 
					    j);
/* L320: */
				}
/* Computing MAX */
				i__7 = 1, i__4 = j - kb;
				i__5 = j;
				for (i__ = max(i__7,i__4); i__ <= i__5; ++i__)
					 {
				    bb_ref(kb + 1 + i__ - j, j) = b_ref(i__, 
					    j);
/* L330: */
				}
/* L340: */
			    }
			} else {
			    i__3 = n;
			    for (j = 1; j <= i__3; ++j) {
/* Computing MIN */
				i__7 = n, i__4 = j + ka;
				i__5 = min(i__7,i__4);
				for (i__ = j; i__ <= i__5; ++i__) {
				    ab_ref(i__ + 1 - j, j) = a_ref(i__, j);
/* L350: */
				}
/* Computing MIN */
				i__7 = n, i__4 = j + kb;
				i__5 = min(i__7,i__4);
				for (i__ = j; i__ <= i__5; ++i__) {
				    bb_ref(i__ + 1 - j, j) = b_ref(i__, j);
/* L360: */
				}
/* L370: */
			    }
			}

			dsbgv_("V", uplo, &n, &ka, &kb, &ab[ab_offset], lda, &
				bb[bb_offset], ldb, &d__[1], &z__[z_offset], 
				ldz, &work[1], &iinfo);
			if (iinfo != 0) {
			    io___58.ciunit = *nounit;
			    s_wsfe(&io___58);
/* Writing concatenation */
			    i__6[0] = 8, a__1[0] = "DSBGV(V,";
			    i__6[1] = 1, a__1[1] = uplo;
			    i__6[2] = 1, a__1[2] = ")";
			    s_cat(ch__1, a__1, i__6, &c__3, (ftnlen)10);
			    do_fio(&c__1, ch__1, (ftnlen)10);
			    do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(
				    integer));
			    do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer))
				    ;
			    do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(
				    integer));
			    do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(
				    integer));
			    e_wsfe();
			    *info = abs(iinfo);
			    if (iinfo < 0) {
				return 0;
			    } else {
				result[ntest] = ulpinv;
				goto L620;
			    }
			}

/*                    Do Test */

			dsgt01_(&ibtype, uplo, &n, &n, &a[a_offset], lda, &b[
				b_offset], ldb, &z__[z_offset], ldz, &d__[1], 
				&work[1], &result[ntest]);

/*                    TEST DSBGVD */

			++ntest;

/*                    Copy the matrices into band storage. */

			if (lsame_(uplo, "U")) {
			    i__3 = n;
			    for (j = 1; j <= i__3; ++j) {
/* Computing MAX */
				i__5 = 1, i__7 = j - ka;
				i__4 = j;
				for (i__ = max(i__5,i__7); i__ <= i__4; ++i__)
					 {
				    ab_ref(ka + 1 + i__ - j, j) = a_ref(i__, 
					    j);
/* L380: */
				}
/* Computing MAX */
				i__4 = 1, i__5 = j - kb;
				i__7 = j;
				for (i__ = max(i__4,i__5); i__ <= i__7; ++i__)
					 {
				    bb_ref(kb + 1 + i__ - j, j) = b_ref(i__, 
					    j);
/* L390: */
				}
/* L400: */
			    }
			} else {
			    i__3 = n;
			    for (j = 1; j <= i__3; ++j) {
/* Computing MIN */
				i__4 = n, i__5 = j + ka;
				i__7 = min(i__4,i__5);
				for (i__ = j; i__ <= i__7; ++i__) {
				    ab_ref(i__ + 1 - j, j) = a_ref(i__, j);
/* L410: */
				}
/* Computing MIN */
				i__4 = n, i__5 = j + kb;
				i__7 = min(i__4,i__5);
				for (i__ = j; i__ <= i__7; ++i__) {
				    bb_ref(i__ + 1 - j, j) = b_ref(i__, j);
/* L420: */
				}
/* L430: */
			    }
			}

			dsbgvd_("V", uplo, &n, &ka, &kb, &ab[ab_offset], lda, 
				&bb[bb_offset], ldb, &d__[1], &z__[z_offset], 
				ldz, &work[1], nwork, &iwork[1], liwork, &
				iinfo);
			if (iinfo != 0) {
			    io___59.ciunit = *nounit;
			    s_wsfe(&io___59);
/* Writing concatenation */
			    i__6[0] = 9, a__1[0] = "DSBGVD(V,";
			    i__6[1] = 1, a__1[1] = uplo;
			    i__6[2] = 1, a__1[2] = ")";
			    s_cat(ch__2, a__1, i__6, &c__3, (ftnlen)11);
			    do_fio(&c__1, ch__2, (ftnlen)11);
			    do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(
				    integer));
			    do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer))
				    ;
			    do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(
				    integer));
			    do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(
				    integer));
			    e_wsfe();
			    *info = abs(iinfo);
			    if (iinfo < 0) {
				return 0;
			    } else {
				result[ntest] = ulpinv;
				goto L620;
			    }
			}

/*                    Do Test */

			dsgt01_(&ibtype, uplo, &n, &n, &a[a_offset], lda, &b[
				b_offset], ldb, &z__[z_offset], ldz, &d__[1], 
				&work[1], &result[ntest]);

/*                    Test DSBGVX */

			++ntest;

/*                    Copy the matrices into band storage. */

			if (lsame_(uplo, "U")) {
			    i__3 = n;
			    for (j = 1; j <= i__3; ++j) {
/* Computing MAX */
				i__7 = 1, i__4 = j - ka;
				i__5 = j;
				for (i__ = max(i__7,i__4); i__ <= i__5; ++i__)
					 {
				    ab_ref(ka + 1 + i__ - j, j) = a_ref(i__, 
					    j);
/* L440: */
				}
/* Computing MAX */
				i__5 = 1, i__7 = j - kb;
				i__4 = j;
				for (i__ = max(i__5,i__7); i__ <= i__4; ++i__)
					 {
				    bb_ref(kb + 1 + i__ - j, j) = b_ref(i__, 
					    j);
/* L450: */
				}
/* L460: */
			    }
			} else {
			    i__3 = n;
			    for (j = 1; j <= i__3; ++j) {
/* Computing MIN */
				i__5 = n, i__7 = j + ka;
				i__4 = min(i__5,i__7);
				for (i__ = j; i__ <= i__4; ++i__) {
				    ab_ref(i__ + 1 - j, j) = a_ref(i__, j);
/* L470: */
				}
/* Computing MIN */
				i__5 = n, i__7 = j + kb;
				i__4 = min(i__5,i__7);
				for (i__ = j; i__ <= i__4; ++i__) {
				    bb_ref(i__ + 1 - j, j) = b_ref(i__, j);
/* L480: */
				}
/* L490: */
			    }
			}

			i__3 = max(1,n);
			dsbgvx_("V", "A", uplo, &n, &ka, &kb, &ab[ab_offset], 
				lda, &bb[bb_offset], ldb, &bp[1], &i__3, &vl, 
				&vu, &il, &iu, &abstol, &m, &d__[1], &z__[
				z_offset], ldz, &work[1], &iwork[n + 1], &
				iwork[1], &iinfo);
			if (iinfo != 0) {
			    io___60.ciunit = *nounit;
			    s_wsfe(&io___60);
/* Writing concatenation */
			    i__6[0] = 10, a__1[0] = "DSBGVX(V,A";
			    i__6[1] = 1, a__1[1] = uplo;
			    i__6[2] = 1, a__1[2] = ")";
			    s_cat(ch__3, a__1, i__6, &c__3, (ftnlen)12);
			    do_fio(&c__1, ch__3, (ftnlen)12);
			    do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(
				    integer));
			    do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer))
				    ;
			    do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(
				    integer));
			    do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(
				    integer));
			    e_wsfe();
			    *info = abs(iinfo);
			    if (iinfo < 0) {
				return 0;
			    } else {
				result[ntest] = ulpinv;
				goto L620;
			    }
			}

/*                    Do Test */

			dsgt01_(&ibtype, uplo, &n, &m, &a[a_offset], lda, &b[
				b_offset], ldb, &z__[z_offset], ldz, &d__[1], 
				&work[1], &result[ntest]);


			++ntest;

/*                    Copy the matrices into band storage. */

			if (lsame_(uplo, "U")) {
			    i__3 = n;
			    for (j = 1; j <= i__3; ++j) {
/* Computing MAX */
				i__4 = 1, i__5 = j - ka;
				i__7 = j;
				for (i__ = max(i__4,i__5); i__ <= i__7; ++i__)
					 {
				    ab_ref(ka + 1 + i__ - j, j) = a_ref(i__, 
					    j);
/* L500: */
				}
/* Computing MAX */
				i__7 = 1, i__4 = j - kb;
				i__5 = j;
				for (i__ = max(i__7,i__4); i__ <= i__5; ++i__)
					 {
				    bb_ref(kb + 1 + i__ - j, j) = b_ref(i__, 
					    j);
/* L510: */
				}
/* L520: */
			    }
			} else {
			    i__3 = n;
			    for (j = 1; j <= i__3; ++j) {
/* Computing MIN */
				i__7 = n, i__4 = j + ka;
				i__5 = min(i__7,i__4);
				for (i__ = j; i__ <= i__5; ++i__) {
				    ab_ref(i__ + 1 - j, j) = a_ref(i__, j);
/* L530: */
				}
/* Computing MIN */
				i__7 = n, i__4 = j + kb;
				i__5 = min(i__7,i__4);
				for (i__ = j; i__ <= i__5; ++i__) {
				    bb_ref(i__ + 1 - j, j) = b_ref(i__, j);
/* L540: */
				}
/* L550: */
			    }
			}

			vl = 0.;
			vu = anorm;
			i__3 = max(1,n);
			dsbgvx_("V", "V", uplo, &n, &ka, &kb, &ab[ab_offset], 
				lda, &bb[bb_offset], ldb, &bp[1], &i__3, &vl, 
				&vu, &il, &iu, &abstol, &m, &d__[1], &z__[
				z_offset], ldz, &work[1], &iwork[n + 1], &
				iwork[1], &iinfo);
			if (iinfo != 0) {
			    io___61.ciunit = *nounit;
			    s_wsfe(&io___61);
/* Writing concatenation */
			    i__6[0] = 10, a__1[0] = "DSBGVX(V,V";
			    i__6[1] = 1, a__1[1] = uplo;
			    i__6[2] = 1, a__1[2] = ")";
			    s_cat(ch__3, a__1, i__6, &c__3, (ftnlen)12);
			    do_fio(&c__1, ch__3, (ftnlen)12);
			    do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(
				    integer));
			    do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer))
				    ;
			    do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(
				    integer));
			    do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(
				    integer));
			    e_wsfe();
			    *info = abs(iinfo);
			    if (iinfo < 0) {
				return 0;
			    } else {
				result[ntest] = ulpinv;
				goto L620;
			    }
			}

/*                    Do Test */

			dsgt01_(&ibtype, uplo, &n, &m, &a[a_offset], lda, &b[
				b_offset], ldb, &z__[z_offset], ldz, &d__[1], 
				&work[1], &result[ntest]);

			++ntest;

/*                    Copy the matrices into band storage. */

			if (lsame_(uplo, "U")) {
			    i__3 = n;
			    for (j = 1; j <= i__3; ++j) {
/* Computing MAX */
				i__5 = 1, i__7 = j - ka;
				i__4 = j;
				for (i__ = max(i__5,i__7); i__ <= i__4; ++i__)
					 {
				    ab_ref(ka + 1 + i__ - j, j) = a_ref(i__, 
					    j);
/* L560: */
				}
/* Computing MAX */
				i__4 = 1, i__5 = j - kb;
				i__7 = j;
				for (i__ = max(i__4,i__5); i__ <= i__7; ++i__)
					 {
				    bb_ref(kb + 1 + i__ - j, j) = b_ref(i__, 
					    j);
/* L570: */
				}
/* L580: */
			    }
			} else {
			    i__3 = n;
			    for (j = 1; j <= i__3; ++j) {
/* Computing MIN */
				i__4 = n, i__5 = j + ka;
				i__7 = min(i__4,i__5);
				for (i__ = j; i__ <= i__7; ++i__) {
				    ab_ref(i__ + 1 - j, j) = a_ref(i__, j);
/* L590: */
				}
/* Computing MIN */
				i__4 = n, i__5 = j + kb;
				i__7 = min(i__4,i__5);
				for (i__ = j; i__ <= i__7; ++i__) {
				    bb_ref(i__ + 1 - j, j) = b_ref(i__, j);
/* L600: */
				}
/* L610: */
			    }
			}

			i__3 = max(1,n);
			dsbgvx_("V", "I", uplo, &n, &ka, &kb, &ab[ab_offset], 
				lda, &bb[bb_offset], ldb, &bp[1], &i__3, &vl, 
				&vu, &il, &iu, &abstol, &m, &d__[1], &z__[
				z_offset], ldz, &work[1], &iwork[n + 1], &
				iwork[1], &iinfo);
			if (iinfo != 0) {
			    io___62.ciunit = *nounit;
			    s_wsfe(&io___62);
/* Writing concatenation */
			    i__6[0] = 10, a__1[0] = "DSBGVX(V,I";
			    i__6[1] = 1, a__1[1] = uplo;
			    i__6[2] = 1, a__1[2] = ")";
			    s_cat(ch__3, a__1, i__6, &c__3, (ftnlen)12);
			    do_fio(&c__1, ch__3, (ftnlen)12);
			    do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(
				    integer));
			    do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer))
				    ;
			    do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(
				    integer));
			    do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(
				    integer));
			    e_wsfe();
			    *info = abs(iinfo);
			    if (iinfo < 0) {
				return 0;
			    } else {
				result[ntest] = ulpinv;
				goto L620;
			    }
			}

/*                    Do Test */

			dsgt01_(&ibtype, uplo, &n, &m, &a[a_offset], lda, &b[
				b_offset], ldb, &z__[z_offset], ldz, &d__[1], 
				&work[1], &result[ntest]);

		    }

L620:
		    ;
		}
/* L630: */
	    }

/*           End of Loop -- Check for RESULT(j) > THRESH */

	    ntestt += ntest;
	    dlafts_("DSG", &n, &n, &jtype, &ntest, &result[1], ioldsd, thresh,
		     nounit, &nerrs);
L640:
	    ;
	}
/* L650: */
    }

/*     Summary */

    dlasum_("DSG", nounit, &nerrs, &ntestt);

    return 0;

/*     End of DDRVSG */

} /* ddrvsg_ */

#undef bb_ref
#undef ab_ref
#undef b_ref
#undef a_ref