#include "blaswrap.h" /* -- translated by f2c (version 19990503). You must link the resulting object file with the libraries: -lf2c -lm (in that order) */ #include "f2c.h" /* Table of constant values */ static doublereal c_b18 = 0.; static integer c__0 = 0; static integer c__6 = 6; static doublereal c_b35 = 1.; static integer c__1 = 1; static integer c__4 = 4; static integer c__5 = 5; static doublereal c_b82 = 10.; static integer c__3 = 3; /* Subroutine */ int ddrvsg_(integer *nsizes, integer *nn, integer *ntypes, logical *dotype, integer *iseed, doublereal *thresh, integer *nounit, doublereal *a, integer *lda, doublereal *b, integer *ldb, doublereal * d__, doublereal *z__, integer *ldz, doublereal *ab, doublereal *bb, doublereal *ap, doublereal *bp, doublereal *work, integer *nwork, integer *iwork, integer *liwork, doublereal *result, integer *info) { /* Initialized data */ static integer ktype[21] = { 1,2,4,4,4,4,4,5,5,5,5,5,8,8,8,9,9,9,9,9,9 }; static integer kmagn[21] = { 1,1,1,1,1,2,3,1,1,1,2,3,1,2,3,1,1,1,1,1,1 }; static integer kmode[21] = { 0,0,4,3,1,4,4,4,3,1,4,4,0,0,0,4,4,4,4,4,4 }; /* Format strings */ static char fmt_9999[] = "(\002 DDRVSG: \002,a,\002 returned INFO=\002,i" "6,\002.\002,/9x,\002N=\002,i6,\002, JTYPE=\002,i6,\002, ISEED=" "(\002,3(i5,\002,\002),i5,\002)\002)"; /* System generated locals */ address a__1[3]; integer a_dim1, a_offset, ab_dim1, ab_offset, b_dim1, b_offset, bb_dim1, bb_offset, z_dim1, z_offset, i__1, i__2, i__3, i__4, i__5, i__6[3] , i__7; char ch__1[10], ch__2[11], ch__3[12], ch__4[13]; /* Builtin functions */ double sqrt(doublereal); integer s_wsfe(cilist *), do_fio(integer *, char *, ftnlen), e_wsfe(void); /* Subroutine */ int s_cat(char *, char **, integer *, integer *, ftnlen); /* Local variables */ static doublereal cond; static integer jcol, nmax; static doublereal unfl, ovfl; static char uplo[1]; static integer i__, j, m, n; static logical badnn; static integer imode; extern logical lsame_(char *, char *); extern /* Subroutine */ int dsgt01_(integer *, char *, integer *, integer *, doublereal *, integer *, doublereal *, integer *, doublereal *, integer *, doublereal *, doublereal *, doublereal *); static integer iinfo; extern /* Subroutine */ int dsbgv_(char *, char *, integer *, integer *, integer *, doublereal *, integer *, doublereal *, integer *, doublereal *, doublereal *, integer *, doublereal *, integer *); static doublereal aninv, anorm; static integer itemp, nmats; extern /* Subroutine */ int dspgv_(integer *, char *, char *, integer *, doublereal *, doublereal *, doublereal *, doublereal *, integer *, doublereal *, integer *); static integer jsize, nerrs, itype, jtype, ntest; extern /* Subroutine */ int dsygv_(integer *, char *, char *, integer *, doublereal *, integer *, doublereal *, integer *, doublereal *, doublereal *, integer *, integer *); static integer iseed2[4]; extern /* Subroutine */ int dlabad_(doublereal *, doublereal *); static integer ka, kb, ij, il; extern doublereal dlamch_(char *); static integer iu; static doublereal vl; extern doublereal dlarnd_(integer *, integer *); extern /* Subroutine */ int dsbgvd_(char *, char *, integer *, integer *, integer *, doublereal *, integer *, doublereal *, integer *, doublereal *, doublereal *, integer *, doublereal *, integer *, integer *, integer *, integer *); static doublereal vu; static integer idumma[1]; extern /* Subroutine */ int dlacpy_(char *, integer *, integer *, doublereal *, integer *, doublereal *, integer *); static integer ioldsd[4]; extern /* Subroutine */ int dlafts_(char *, integer *, integer *, integer *, integer *, doublereal *, integer *, doublereal *, integer *, integer *), dlaset_(char *, integer *, integer *, doublereal *, doublereal *, doublereal *, integer *), xerbla_(char *, integer *), dlatmr_(integer *, integer *, char *, integer *, char *, doublereal *, integer *, doublereal *, doublereal *, char *, char *, doublereal *, integer *, doublereal *, doublereal *, integer *, doublereal *, char *, integer *, integer *, integer *, doublereal *, doublereal *, char *, doublereal *, integer *, integer *, integer *); static doublereal abstol; extern /* Subroutine */ int dlasum_(char *, integer *, integer *, integer *), dlatms_(integer *, integer *, char *, integer *, char *, doublereal *, integer *, doublereal *, doublereal *, integer *, integer *, char *, doublereal *, integer *, doublereal *, integer *), dspgvd_(integer *, char *, char *, integer *, doublereal *, doublereal *, doublereal *, doublereal *, integer *, doublereal *, integer *, integer *, integer *, integer *); static integer ibuplo, ibtype; extern /* Subroutine */ int dsbgvx_(char *, char *, char *, integer *, integer *, integer *, doublereal *, integer *, doublereal *, integer *, doublereal *, integer *, doublereal *, doublereal *, integer *, integer *, doublereal *, integer *, doublereal *, doublereal *, integer *, doublereal *, integer *, integer *, integer *), dsygvd_(integer *, char *, char *, integer *, doublereal *, integer *, doublereal *, integer *, doublereal *, doublereal *, integer *, integer *, integer *, integer *); static integer ka9, kb9; static doublereal rtunfl, rtovfl, ulpinv; extern /* Subroutine */ int dspgvx_(integer *, char *, char *, char *, integer *, doublereal *, doublereal *, doublereal *, doublereal *, integer *, integer *, doublereal *, integer *, doublereal *, doublereal *, integer *, doublereal *, integer *, integer *, integer *); static integer mtypes, ntestt; extern /* Subroutine */ int dsygvx_(integer *, char *, char *, char *, integer *, doublereal *, integer *, doublereal *, integer *, doublereal *, doublereal *, integer *, integer *, doublereal *, integer *, doublereal *, doublereal *, integer *, doublereal *, integer *, integer *, integer *, integer *); static doublereal ulp; /* Fortran I/O blocks */ static cilist io___36 = { 0, 0, 0, fmt_9999, 0 }; static cilist io___44 = { 0, 0, 0, fmt_9999, 0 }; static cilist io___45 = { 0, 0, 0, fmt_9999, 0 }; static cilist io___49 = { 0, 0, 0, fmt_9999, 0 }; static cilist io___50 = { 0, 0, 0, fmt_9999, 0 }; static cilist io___51 = { 0, 0, 0, fmt_9999, 0 }; static cilist io___53 = { 0, 0, 0, fmt_9999, 0 }; static cilist io___54 = { 0, 0, 0, fmt_9999, 0 }; static cilist io___55 = { 0, 0, 0, fmt_9999, 0 }; static cilist io___56 = { 0, 0, 0, fmt_9999, 0 }; static cilist io___57 = { 0, 0, 0, fmt_9999, 0 }; static cilist io___58 = { 0, 0, 0, fmt_9999, 0 }; static cilist io___59 = { 0, 0, 0, fmt_9999, 0 }; static cilist io___60 = { 0, 0, 0, fmt_9999, 0 }; static cilist io___61 = { 0, 0, 0, fmt_9999, 0 }; static cilist io___62 = { 0, 0, 0, fmt_9999, 0 }; #define a_ref(a_1,a_2) a[(a_2)*a_dim1 + a_1] #define b_ref(a_1,a_2) b[(a_2)*b_dim1 + a_1] #define ab_ref(a_1,a_2) ab[(a_2)*ab_dim1 + a_1] #define bb_ref(a_1,a_2) bb[(a_2)*bb_dim1 + a_1] /* -- LAPACK test routine (version 3.0) -- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., Courant Institute, Argonne National Lab, and Rice University June 30, 1999 ****************************************************************** modified August 1997, a new parameter LIWORK is added in the calling sequence. test routine DDGT01 is also modified ****************************************************************** Purpose ======= DDRVSG checks the real symmetric generalized eigenproblem drivers. DSYGV computes all eigenvalues and, optionally, eigenvectors of a real symmetric-definite generalized eigenproblem. DSYGVD computes all eigenvalues and, optionally, eigenvectors of a real symmetric-definite generalized eigenproblem using a divide and conquer algorithm. DSYGVX computes selected eigenvalues and, optionally, eigenvectors of a real symmetric-definite generalized eigenproblem. DSPGV computes all eigenvalues and, optionally, eigenvectors of a real symmetric-definite generalized eigenproblem in packed storage. DSPGVD computes all eigenvalues and, optionally, eigenvectors of a real symmetric-definite generalized eigenproblem in packed storage using a divide and conquer algorithm. DSPGVX computes selected eigenvalues and, optionally, eigenvectors of a real symmetric-definite generalized eigenproblem in packed storage. DSBGV computes all eigenvalues and, optionally, eigenvectors of a real symmetric-definite banded generalized eigenproblem. DSBGVD computes all eigenvalues and, optionally, eigenvectors of a real symmetric-definite banded generalized eigenproblem using a divide and conquer algorithm. DSBGVX computes selected eigenvalues and, optionally, eigenvectors of a real symmetric-definite banded generalized eigenproblem. When DDRVSG is called, a number of matrix "sizes" ("n's") and a number of matrix "types" are specified. For each size ("n") and each type of matrix, one matrix A of the given type will be generated; a random well-conditioned matrix B is also generated and the pair (A,B) is used to test the drivers. For each pair (A,B), the following tests are performed: (1) DSYGV with ITYPE = 1 and UPLO ='U': | A Z - B Z D | / ( |A| |Z| n ulp ) (2) as (1) but calling DSPGV (3) as (1) but calling DSBGV (4) as (1) but with UPLO = 'L' (5) as (4) but calling DSPGV (6) as (4) but calling DSBGV (7) DSYGV with ITYPE = 2 and UPLO ='U': | A B Z - Z D | / ( |A| |Z| n ulp ) (8) as (7) but calling DSPGV (9) as (7) but with UPLO = 'L' (10) as (9) but calling DSPGV (11) DSYGV with ITYPE = 3 and UPLO ='U': | B A Z - Z D | / ( |A| |Z| n ulp ) (12) as (11) but calling DSPGV (13) as (11) but with UPLO = 'L' (14) as (13) but calling DSPGV DSYGVD, DSPGVD and DSBGVD performed the same 14 tests. DSYGVX, DSPGVX and DSBGVX performed the above 14 tests with the parameter RANGE = 'A', 'N' and 'I', respectively. The "sizes" are specified by an array NN(1:NSIZES); the value of each element NN(j) specifies one size. The "types" are specified by a logical array DOTYPE( 1:NTYPES ); if DOTYPE(j) is .TRUE., then matrix type "j" will be generated. This type is used for the matrix A which has half-bandwidth KA. B is generated as a well-conditioned positive definite matrix with half-bandwidth KB (<= KA). Currently, the list of possible types for A is: (1) The zero matrix. (2) The identity matrix. (3) A diagonal matrix with evenly spaced entries 1, ..., ULP and random signs. (ULP = (first number larger than 1) - 1 ) (4) A diagonal matrix with geometrically spaced entries 1, ..., ULP and random signs. (5) A diagonal matrix with "clustered" entries 1, ULP, ..., ULP and random signs. (6) Same as (4), but multiplied by SQRT( overflow threshold ) (7) Same as (4), but multiplied by SQRT( underflow threshold ) (8) A matrix of the form U* D U, where U is orthogonal and D has evenly spaced entries 1, ..., ULP with random signs on the diagonal. (9) A matrix of the form U* D U, where U is orthogonal and D has geometrically spaced entries 1, ..., ULP with random signs on the diagonal. (10) A matrix of the form U* D U, where U is orthogonal and D has "clustered" entries 1, ULP,..., ULP with random signs on the diagonal. (11) Same as (8), but multiplied by SQRT( overflow threshold ) (12) Same as (8), but multiplied by SQRT( underflow threshold ) (13) symmetric matrix with random entries chosen from (-1,1). (14) Same as (13), but multiplied by SQRT( overflow threshold ) (15) Same as (13), but multiplied by SQRT( underflow threshold) (16) Same as (8), but with KA = 1 and KB = 1 (17) Same as (8), but with KA = 2 and KB = 1 (18) Same as (8), but with KA = 2 and KB = 2 (19) Same as (8), but with KA = 3 and KB = 1 (20) Same as (8), but with KA = 3 and KB = 2 (21) Same as (8), but with KA = 3 and KB = 3 Arguments ========= NSIZES INTEGER The number of sizes of matrices to use. If it is zero, DDRVSG does nothing. It must be at least zero. Not modified. NN INTEGER array, dimension (NSIZES) An array containing the sizes to be used for the matrices. Zero values will be skipped. The values must be at least zero. Not modified. NTYPES INTEGER The number of elements in DOTYPE. If it is zero, DDRVSG does nothing. It must be at least zero. If it is MAXTYP+1 and NSIZES is 1, then an additional type, MAXTYP+1 is defined, which is to use whatever matrix is in A. This is only useful if DOTYPE(1:MAXTYP) is .FALSE. and DOTYPE(MAXTYP+1) is .TRUE. . Not modified. DOTYPE LOGICAL array, dimension (NTYPES) If DOTYPE(j) is .TRUE., then for each size in NN a matrix of that size and of type j will be generated. If NTYPES is smaller than the maximum number of types defined (PARAMETER MAXTYP), then types NTYPES+1 through MAXTYP will not be generated. If NTYPES is larger than MAXTYP, DOTYPE(MAXTYP+1) through DOTYPE(NTYPES) will be ignored. Not modified. ISEED INTEGER array, dimension (4) On entry ISEED specifies the seed of the random number generator. The array elements should be between 0 and 4095; if not they will be reduced mod 4096. Also, ISEED(4) must be odd. The random number generator uses a linear congruential sequence limited to small integers, and so should produce machine independent random numbers. The values of ISEED are changed on exit, and can be used in the next call to DDRVSG to continue the same random number sequence. Modified. THRESH DOUBLE PRECISION A test will count as "failed" if the "error", computed as described above, exceeds THRESH. Note that the error is scaled to be O(1), so THRESH should be a reasonably small multiple of 1, e.g., 10 or 100. In particular, it should not depend on the precision (single vs. double) or the size of the matrix. It must be at least zero. Not modified. NOUNIT INTEGER The FORTRAN unit number for printing out error messages (e.g., if a routine returns IINFO not equal to 0.) Not modified. A DOUBLE PRECISION array, dimension (LDA , max(NN)) Used to hold the matrix whose eigenvalues are to be computed. On exit, A contains the last matrix actually used. Modified. LDA INTEGER The leading dimension of A and AB. It must be at least 1 and at least max( NN ). Not modified. B DOUBLE PRECISION array, dimension (LDB , max(NN)) Used to hold the symmetric positive definite matrix for the generailzed problem. On exit, B contains the last matrix actually used. Modified. LDB INTEGER The leading dimension of B and BB. It must be at least 1 and at least max( NN ). Not modified. D DOUBLE PRECISION array, dimension (max(NN)) The eigenvalues of A. On exit, the eigenvalues in D correspond with the matrix in A. Modified. Z DOUBLE PRECISION array, dimension (LDZ, max(NN)) The matrix of eigenvectors. Modified. LDZ INTEGER The leading dimension of Z. It must be at least 1 and at least max( NN ). Not modified. AB DOUBLE PRECISION array, dimension (LDA, max(NN)) Workspace. Modified. BB DOUBLE PRECISION array, dimension (LDB, max(NN)) Workspace. Modified. AP DOUBLE PRECISION array, dimension (max(NN)**2) Workspace. Modified. BP DOUBLE PRECISION array, dimension (max(NN)**2) Workspace. Modified. WORK DOUBLE PRECISION array, dimension (NWORK) Workspace. Modified. NWORK INTEGER The number of entries in WORK. This must be at least 1+5*N+2*N*lg(N)+3*N**2 where N = max( NN(j) ) and lg( N ) = smallest integer k such that 2**k >= N. Not modified. IWORK INTEGER array, dimension (LIWORK) Workspace. Modified. LIWORK INTEGER The number of entries in WORK. This must be at least 6*N. Not modified. RESULT DOUBLE PRECISION array, dimension (70) The values computed by the 70 tests described above. Modified. INFO INTEGER If 0, then everything ran OK. -1: NSIZES < 0 -2: Some NN(j) < 0 -3: NTYPES < 0 -5: THRESH < 0 -9: LDA < 1 or LDA < NMAX, where NMAX is max( NN(j) ). -16: LDZ < 1 or LDZ < NMAX. -21: NWORK too small. -23: LIWORK too small. If DLATMR, SLATMS, DSYGV, DSPGV, DSBGV, SSYGVD, SSPGVD, DSBGVD, DSYGVX, DSPGVX or SSBGVX returns an error code, the absolute value of it is returned. Modified. ---------------------------------------------------------------------- Some Local Variables and Parameters: ---- ----- --------- --- ---------- ZERO, ONE Real 0 and 1. MAXTYP The number of types defined. NTEST The number of tests that have been run on this matrix. NTESTT The total number of tests for this call. NMAX Largest value in NN. NMATS The number of matrices generated so far. NERRS The number of tests which have exceeded THRESH so far (computed by DLAFTS). COND, IMODE Values to be passed to the matrix generators. ANORM Norm of A; passed to matrix generators. OVFL, UNFL Overflow and underflow thresholds. ULP, ULPINV Finest relative precision and its inverse. RTOVFL, RTUNFL Square roots of the previous 2 values. The following four arrays decode JTYPE: KTYPE(j) The general type (1-10) for type "j". KMODE(j) The MODE value to be passed to the matrix generator for type "j". KMAGN(j) The order of magnitude ( O(1), O(overflow^(1/2) ), O(underflow^(1/2) ) ===================================================================== Parameter adjustments */ --nn; --dotype; --iseed; ab_dim1 = *lda; ab_offset = 1 + ab_dim1 * 1; ab -= ab_offset; a_dim1 = *lda; a_offset = 1 + a_dim1 * 1; a -= a_offset; bb_dim1 = *ldb; bb_offset = 1 + bb_dim1 * 1; bb -= bb_offset; b_dim1 = *ldb; b_offset = 1 + b_dim1 * 1; b -= b_offset; --d__; z_dim1 = *ldz; z_offset = 1 + z_dim1 * 1; z__ -= z_offset; --ap; --bp; --work; --iwork; --result; /* Function Body 1) Check for errors */ ntestt = 0; *info = 0; badnn = FALSE_; nmax = 0; i__1 = *nsizes; for (j = 1; j <= i__1; ++j) { /* Computing MAX */ i__2 = nmax, i__3 = nn[j]; nmax = max(i__2,i__3); if (nn[j] < 0) { badnn = TRUE_; } /* L10: */ } /* Check for errors */ if (*nsizes < 0) { *info = -1; } else if (badnn) { *info = -2; } else if (*ntypes < 0) { *info = -3; } else if (*lda <= 1 || *lda < nmax) { *info = -9; } else if (*ldz <= 1 || *ldz < nmax) { *info = -16; } else /* if(complicated condition) */ { /* Computing 2nd power */ i__1 = max(nmax,3); if (i__1 * i__1 << 1 > *nwork) { *info = -21; } else /* if(complicated condition) */ { /* Computing 2nd power */ i__1 = max(nmax,3); if (i__1 * i__1 << 1 > *liwork) { *info = -23; } } } if (*info != 0) { i__1 = -(*info); xerbla_("DDRVSG", &i__1); return 0; } /* Quick return if possible */ if (*nsizes == 0 || *ntypes == 0) { return 0; } /* More Important constants */ unfl = dlamch_("Safe minimum"); ovfl = dlamch_("Overflow"); dlabad_(&unfl, &ovfl); ulp = dlamch_("Epsilon") * dlamch_("Base"); ulpinv = 1. / ulp; rtunfl = sqrt(unfl); rtovfl = sqrt(ovfl); for (i__ = 1; i__ <= 4; ++i__) { iseed2[i__ - 1] = iseed[i__]; /* L20: */ } /* Loop over sizes, types */ nerrs = 0; nmats = 0; i__1 = *nsizes; for (jsize = 1; jsize <= i__1; ++jsize) { n = nn[jsize]; aninv = 1. / (doublereal) max(1,n); if (*nsizes != 1) { mtypes = min(21,*ntypes); } else { mtypes = min(22,*ntypes); } ka9 = 0; kb9 = 0; i__2 = mtypes; for (jtype = 1; jtype <= i__2; ++jtype) { if (! dotype[jtype]) { goto L640; } ++nmats; ntest = 0; for (j = 1; j <= 4; ++j) { ioldsd[j - 1] = iseed[j]; /* L30: */ } /* 2) Compute "A" Control parameters: KMAGN KMODE KTYPE =1 O(1) clustered 1 zero =2 large clustered 2 identity =3 small exponential (none) =4 arithmetic diagonal, w/ eigenvalues =5 random log hermitian, w/ eigenvalues =6 random (none) =7 random diagonal =8 random hermitian =9 banded, w/ eigenvalues */ if (mtypes > 21) { goto L90; } itype = ktype[jtype - 1]; imode = kmode[jtype - 1]; /* Compute norm */ switch (kmagn[jtype - 1]) { case 1: goto L40; case 2: goto L50; case 3: goto L60; } L40: anorm = 1.; goto L70; L50: anorm = rtovfl * ulp * aninv; goto L70; L60: anorm = rtunfl * n * ulpinv; goto L70; L70: iinfo = 0; cond = ulpinv; /* Special Matrices -- Identity & Jordan block */ if (itype == 1) { /* Zero */ ka = 0; kb = 0; dlaset_("Full", lda, &n, &c_b18, &c_b18, &a[a_offset], lda); } else if (itype == 2) { /* Identity */ ka = 0; kb = 0; dlaset_("Full", lda, &n, &c_b18, &c_b18, &a[a_offset], lda); i__3 = n; for (jcol = 1; jcol <= i__3; ++jcol) { a_ref(jcol, jcol) = anorm; /* L80: */ } } else if (itype == 4) { /* Diagonal Matrix, [Eigen]values Specified */ ka = 0; kb = 0; dlatms_(&n, &n, "S", &iseed[1], "S", &work[1], &imode, &cond, &anorm, &c__0, &c__0, "N", &a[a_offset], lda, &work[n + 1], &iinfo); } else if (itype == 5) { /* symmetric, eigenvalues specified Computing MAX */ i__3 = 0, i__4 = n - 1; ka = max(i__3,i__4); kb = ka; dlatms_(&n, &n, "S", &iseed[1], "S", &work[1], &imode, &cond, &anorm, &n, &n, "N", &a[a_offset], lda, &work[n + 1], &iinfo); } else if (itype == 7) { /* Diagonal, random eigenvalues */ ka = 0; kb = 0; dlatmr_(&n, &n, "S", &iseed[1], "S", &work[1], &c__6, &c_b35, &c_b35, "T", "N", &work[n + 1], &c__1, &c_b35, &work[( n << 1) + 1], &c__1, &c_b35, "N", idumma, &c__0, & c__0, &c_b18, &anorm, "NO", &a[a_offset], lda, &iwork[ 1], &iinfo); } else if (itype == 8) { /* symmetric, random eigenvalues Computing MAX */ i__3 = 0, i__4 = n - 1; ka = max(i__3,i__4); kb = ka; dlatmr_(&n, &n, "S", &iseed[1], "H", &work[1], &c__6, &c_b35, &c_b35, "T", "N", &work[n + 1], &c__1, &c_b35, &work[( n << 1) + 1], &c__1, &c_b35, "N", idumma, &n, &n, & c_b18, &anorm, "NO", &a[a_offset], lda, &iwork[1], & iinfo); } else if (itype == 9) { /* symmetric banded, eigenvalues specified The following values are used for the half-bandwidths: ka = 1 kb = 1 ka = 2 kb = 1 ka = 2 kb = 2 ka = 3 kb = 1 ka = 3 kb = 2 ka = 3 kb = 3 */ ++kb9; if (kb9 > ka9) { ++ka9; kb9 = 1; } /* Computing MAX Computing MIN */ i__5 = n - 1; i__3 = 0, i__4 = min(i__5,ka9); ka = max(i__3,i__4); /* Computing MAX Computing MIN */ i__5 = n - 1; i__3 = 0, i__4 = min(i__5,kb9); kb = max(i__3,i__4); dlatms_(&n, &n, "S", &iseed[1], "S", &work[1], &imode, &cond, &anorm, &ka, &ka, "N", &a[a_offset], lda, &work[n + 1] , &iinfo); } else { iinfo = 1; } if (iinfo != 0) { io___36.ciunit = *nounit; s_wsfe(&io___36); do_fio(&c__1, "Generator", (ftnlen)9); do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer)); do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer)); e_wsfe(); *info = abs(iinfo); return 0; } L90: abstol = unfl + unfl; if (n <= 1) { il = 1; iu = n; } else { il = (integer) ((n - 1) * dlarnd_(&c__1, iseed2) + 1); iu = (integer) ((n - 1) * dlarnd_(&c__1, iseed2) + 1); if (il > iu) { itemp = il; il = iu; iu = itemp; } } /* 3) Call DSYGV, DSPGV, DSBGV, SSYGVD, SSPGVD, SSBGVD, DSYGVX, DSPGVX, and DSBGVX, do tests. loop over the three generalized problems IBTYPE = 1: A*x = (lambda)*B*x IBTYPE = 2: A*B*x = (lambda)*x IBTYPE = 3: B*A*x = (lambda)*x */ for (ibtype = 1; ibtype <= 3; ++ibtype) { /* loop over the setting UPLO */ for (ibuplo = 1; ibuplo <= 2; ++ibuplo) { if (ibuplo == 1) { *(unsigned char *)uplo = 'U'; } if (ibuplo == 2) { *(unsigned char *)uplo = 'L'; } /* Generate random well-conditioned positive definite matrix B, of bandwidth not greater than that of A. */ dlatms_(&n, &n, "U", &iseed[1], "P", &work[1], &c__5, & c_b82, &c_b35, &kb, &kb, uplo, &b[b_offset], ldb, &work[n + 1], &iinfo); /* Test DSYGV */ ++ntest; dlacpy_(" ", &n, &n, &a[a_offset], lda, &z__[z_offset], ldz); dlacpy_(uplo, &n, &n, &b[b_offset], ldb, &bb[bb_offset], ldb); dsygv_(&ibtype, "V", uplo, &n, &z__[z_offset], ldz, &bb[ bb_offset], ldb, &d__[1], &work[1], nwork, &iinfo); if (iinfo != 0) { io___44.ciunit = *nounit; s_wsfe(&io___44); /* Writing concatenation */ i__6[0] = 8, a__1[0] = "DSYGV(V,"; i__6[1] = 1, a__1[1] = uplo; i__6[2] = 1, a__1[2] = ")"; s_cat(ch__1, a__1, i__6, &c__3, (ftnlen)10); do_fio(&c__1, ch__1, (ftnlen)10); do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer)) ; do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer)) ; do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof( integer)); e_wsfe(); *info = abs(iinfo); if (iinfo < 0) { return 0; } else { result[ntest] = ulpinv; goto L100; } } /* Do Test */ dsgt01_(&ibtype, uplo, &n, &n, &a[a_offset], lda, &b[ b_offset], ldb, &z__[z_offset], ldz, &d__[1], & work[1], &result[ntest]); /* Test DSYGVD */ ++ntest; dlacpy_(" ", &n, &n, &a[a_offset], lda, &z__[z_offset], ldz); dlacpy_(uplo, &n, &n, &b[b_offset], ldb, &bb[bb_offset], ldb); dsygvd_(&ibtype, "V", uplo, &n, &z__[z_offset], ldz, &bb[ bb_offset], ldb, &d__[1], &work[1], nwork, &iwork[ 1], liwork, &iinfo); if (iinfo != 0) { io___45.ciunit = *nounit; s_wsfe(&io___45); /* Writing concatenation */ i__6[0] = 9, a__1[0] = "DSYGVD(V,"; i__6[1] = 1, a__1[1] = uplo; i__6[2] = 1, a__1[2] = ")"; s_cat(ch__2, a__1, i__6, &c__3, (ftnlen)11); do_fio(&c__1, ch__2, (ftnlen)11); do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer)) ; do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer)) ; do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof( integer)); e_wsfe(); *info = abs(iinfo); if (iinfo < 0) { return 0; } else { result[ntest] = ulpinv; goto L100; } } /* Do Test */ dsgt01_(&ibtype, uplo, &n, &n, &a[a_offset], lda, &b[ b_offset], ldb, &z__[z_offset], ldz, &d__[1], & work[1], &result[ntest]); /* Test DSYGVX */ ++ntest; dlacpy_(" ", &n, &n, &a[a_offset], lda, &ab[ab_offset], lda); dlacpy_(uplo, &n, &n, &b[b_offset], ldb, &bb[bb_offset], ldb); dsygvx_(&ibtype, "V", "A", uplo, &n, &ab[ab_offset], lda, &bb[bb_offset], ldb, &vl, &vu, &il, &iu, &abstol, &m, &d__[1], &z__[z_offset], ldz, &work[1], nwork, &iwork[n + 1], &iwork[1], &iinfo); if (iinfo != 0) { io___49.ciunit = *nounit; s_wsfe(&io___49); /* Writing concatenation */ i__6[0] = 10, a__1[0] = "DSYGVX(V,A"; i__6[1] = 1, a__1[1] = uplo; i__6[2] = 1, a__1[2] = ")"; s_cat(ch__3, a__1, i__6, &c__3, (ftnlen)12); do_fio(&c__1, ch__3, (ftnlen)12); do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer)) ; do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer)) ; do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof( integer)); e_wsfe(); *info = abs(iinfo); if (iinfo < 0) { return 0; } else { result[ntest] = ulpinv; goto L100; } } /* Do Test */ dsgt01_(&ibtype, uplo, &n, &n, &a[a_offset], lda, &b[ b_offset], ldb, &z__[z_offset], ldz, &d__[1], & work[1], &result[ntest]); ++ntest; dlacpy_(" ", &n, &n, &a[a_offset], lda, &ab[ab_offset], lda); dlacpy_(uplo, &n, &n, &b[b_offset], ldb, &bb[bb_offset], ldb); /* since we do not know the exact eigenvalues of this eigenpair, we just set VL and VU as constants. It is quite possible that there are no eigenvalues in this interval. */ vl = 0.; vu = anorm; dsygvx_(&ibtype, "V", "V", uplo, &n, &ab[ab_offset], lda, &bb[bb_offset], ldb, &vl, &vu, &il, &iu, &abstol, &m, &d__[1], &z__[z_offset], ldz, &work[1], nwork, &iwork[n + 1], &iwork[1], &iinfo); if (iinfo != 0) { io___50.ciunit = *nounit; s_wsfe(&io___50); /* Writing concatenation */ i__6[0] = 11, a__1[0] = "DSYGVX(V,V,"; i__6[1] = 1, a__1[1] = uplo; i__6[2] = 1, a__1[2] = ")"; s_cat(ch__4, a__1, i__6, &c__3, (ftnlen)13); do_fio(&c__1, ch__4, (ftnlen)13); do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer)) ; do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer)) ; do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof( integer)); e_wsfe(); *info = abs(iinfo); if (iinfo < 0) { return 0; } else { result[ntest] = ulpinv; goto L100; } } /* Do Test */ dsgt01_(&ibtype, uplo, &n, &m, &a[a_offset], lda, &b[ b_offset], ldb, &z__[z_offset], ldz, &d__[1], & work[1], &result[ntest]); ++ntest; dlacpy_(" ", &n, &n, &a[a_offset], lda, &ab[ab_offset], lda); dlacpy_(uplo, &n, &n, &b[b_offset], ldb, &bb[bb_offset], ldb); dsygvx_(&ibtype, "V", "I", uplo, &n, &ab[ab_offset], lda, &bb[bb_offset], ldb, &vl, &vu, &il, &iu, &abstol, &m, &d__[1], &z__[z_offset], ldz, &work[1], nwork, &iwork[n + 1], &iwork[1], &iinfo); if (iinfo != 0) { io___51.ciunit = *nounit; s_wsfe(&io___51); /* Writing concatenation */ i__6[0] = 11, a__1[0] = "DSYGVX(V,I,"; i__6[1] = 1, a__1[1] = uplo; i__6[2] = 1, a__1[2] = ")"; s_cat(ch__4, a__1, i__6, &c__3, (ftnlen)13); do_fio(&c__1, ch__4, (ftnlen)13); do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer)) ; do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer)) ; do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof( integer)); e_wsfe(); *info = abs(iinfo); if (iinfo < 0) { return 0; } else { result[ntest] = ulpinv; goto L100; } } /* Do Test */ dsgt01_(&ibtype, uplo, &n, &m, &a[a_offset], lda, &b[ b_offset], ldb, &z__[z_offset], ldz, &d__[1], & work[1], &result[ntest]); L100: /* Test DSPGV */ ++ntest; /* Copy the matrices into packed storage. */ if (lsame_(uplo, "U")) { ij = 1; i__3 = n; for (j = 1; j <= i__3; ++j) { i__4 = j; for (i__ = 1; i__ <= i__4; ++i__) { ap[ij] = a_ref(i__, j); bp[ij] = b_ref(i__, j); ++ij; /* L110: */ } /* L120: */ } } else { ij = 1; i__3 = n; for (j = 1; j <= i__3; ++j) { i__4 = n; for (i__ = j; i__ <= i__4; ++i__) { ap[ij] = a_ref(i__, j); bp[ij] = b_ref(i__, j); ++ij; /* L130: */ } /* L140: */ } } dspgv_(&ibtype, "V", uplo, &n, &ap[1], &bp[1], &d__[1], & z__[z_offset], ldz, &work[1], &iinfo); if (iinfo != 0) { io___53.ciunit = *nounit; s_wsfe(&io___53); /* Writing concatenation */ i__6[0] = 8, a__1[0] = "DSPGV(V,"; i__6[1] = 1, a__1[1] = uplo; i__6[2] = 1, a__1[2] = ")"; s_cat(ch__1, a__1, i__6, &c__3, (ftnlen)10); do_fio(&c__1, ch__1, (ftnlen)10); do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer)) ; do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer)) ; do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof( integer)); e_wsfe(); *info = abs(iinfo); if (iinfo < 0) { return 0; } else { result[ntest] = ulpinv; goto L310; } } /* Do Test */ dsgt01_(&ibtype, uplo, &n, &n, &a[a_offset], lda, &b[ b_offset], ldb, &z__[z_offset], ldz, &d__[1], & work[1], &result[ntest]); /* Test DSPGVD */ ++ntest; /* Copy the matrices into packed storage. */ if (lsame_(uplo, "U")) { ij = 1; i__3 = n; for (j = 1; j <= i__3; ++j) { i__4 = j; for (i__ = 1; i__ <= i__4; ++i__) { ap[ij] = a_ref(i__, j); bp[ij] = b_ref(i__, j); ++ij; /* L150: */ } /* L160: */ } } else { ij = 1; i__3 = n; for (j = 1; j <= i__3; ++j) { i__4 = n; for (i__ = j; i__ <= i__4; ++i__) { ap[ij] = a_ref(i__, j); bp[ij] = b_ref(i__, j); ++ij; /* L170: */ } /* L180: */ } } dspgvd_(&ibtype, "V", uplo, &n, &ap[1], &bp[1], &d__[1], & z__[z_offset], ldz, &work[1], nwork, &iwork[1], liwork, &iinfo); if (iinfo != 0) { io___54.ciunit = *nounit; s_wsfe(&io___54); /* Writing concatenation */ i__6[0] = 9, a__1[0] = "DSPGVD(V,"; i__6[1] = 1, a__1[1] = uplo; i__6[2] = 1, a__1[2] = ")"; s_cat(ch__2, a__1, i__6, &c__3, (ftnlen)11); do_fio(&c__1, ch__2, (ftnlen)11); do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer)) ; do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer)) ; do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof( integer)); e_wsfe(); *info = abs(iinfo); if (iinfo < 0) { return 0; } else { result[ntest] = ulpinv; goto L310; } } /* Do Test */ dsgt01_(&ibtype, uplo, &n, &n, &a[a_offset], lda, &b[ b_offset], ldb, &z__[z_offset], ldz, &d__[1], & work[1], &result[ntest]); /* Test DSPGVX */ ++ntest; /* Copy the matrices into packed storage. */ if (lsame_(uplo, "U")) { ij = 1; i__3 = n; for (j = 1; j <= i__3; ++j) { i__4 = j; for (i__ = 1; i__ <= i__4; ++i__) { ap[ij] = a_ref(i__, j); bp[ij] = b_ref(i__, j); ++ij; /* L190: */ } /* L200: */ } } else { ij = 1; i__3 = n; for (j = 1; j <= i__3; ++j) { i__4 = n; for (i__ = j; i__ <= i__4; ++i__) { ap[ij] = a_ref(i__, j); bp[ij] = b_ref(i__, j); ++ij; /* L210: */ } /* L220: */ } } dspgvx_(&ibtype, "V", "A", uplo, &n, &ap[1], &bp[1], &vl, &vu, &il, &iu, &abstol, &m, &d__[1], &z__[ z_offset], ldz, &work[1], &iwork[n + 1], &iwork[1] , info); if (iinfo != 0) { io___55.ciunit = *nounit; s_wsfe(&io___55); /* Writing concatenation */ i__6[0] = 10, a__1[0] = "DSPGVX(V,A"; i__6[1] = 1, a__1[1] = uplo; i__6[2] = 1, a__1[2] = ")"; s_cat(ch__3, a__1, i__6, &c__3, (ftnlen)12); do_fio(&c__1, ch__3, (ftnlen)12); do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer)) ; do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer)) ; do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof( integer)); e_wsfe(); *info = abs(iinfo); if (iinfo < 0) { return 0; } else { result[ntest] = ulpinv; goto L310; } } /* Do Test */ dsgt01_(&ibtype, uplo, &n, &m, &a[a_offset], lda, &b[ b_offset], ldb, &z__[z_offset], ldz, &d__[1], & work[1], &result[ntest]); ++ntest; /* Copy the matrices into packed storage. */ if (lsame_(uplo, "U")) { ij = 1; i__3 = n; for (j = 1; j <= i__3; ++j) { i__4 = j; for (i__ = 1; i__ <= i__4; ++i__) { ap[ij] = a_ref(i__, j); bp[ij] = b_ref(i__, j); ++ij; /* L230: */ } /* L240: */ } } else { ij = 1; i__3 = n; for (j = 1; j <= i__3; ++j) { i__4 = n; for (i__ = j; i__ <= i__4; ++i__) { ap[ij] = a_ref(i__, j); bp[ij] = b_ref(i__, j); ++ij; /* L250: */ } /* L260: */ } } vl = 0.; vu = anorm; dspgvx_(&ibtype, "V", "V", uplo, &n, &ap[1], &bp[1], &vl, &vu, &il, &iu, &abstol, &m, &d__[1], &z__[ z_offset], ldz, &work[1], &iwork[n + 1], &iwork[1] , info); if (iinfo != 0) { io___56.ciunit = *nounit; s_wsfe(&io___56); /* Writing concatenation */ i__6[0] = 10, a__1[0] = "DSPGVX(V,V"; i__6[1] = 1, a__1[1] = uplo; i__6[2] = 1, a__1[2] = ")"; s_cat(ch__3, a__1, i__6, &c__3, (ftnlen)12); do_fio(&c__1, ch__3, (ftnlen)12); do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer)) ; do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer)) ; do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof( integer)); e_wsfe(); *info = abs(iinfo); if (iinfo < 0) { return 0; } else { result[ntest] = ulpinv; goto L310; } } /* Do Test */ dsgt01_(&ibtype, uplo, &n, &m, &a[a_offset], lda, &b[ b_offset], ldb, &z__[z_offset], ldz, &d__[1], & work[1], &result[ntest]); ++ntest; /* Copy the matrices into packed storage. */ if (lsame_(uplo, "U")) { ij = 1; i__3 = n; for (j = 1; j <= i__3; ++j) { i__4 = j; for (i__ = 1; i__ <= i__4; ++i__) { ap[ij] = a_ref(i__, j); bp[ij] = b_ref(i__, j); ++ij; /* L270: */ } /* L280: */ } } else { ij = 1; i__3 = n; for (j = 1; j <= i__3; ++j) { i__4 = n; for (i__ = j; i__ <= i__4; ++i__) { ap[ij] = a_ref(i__, j); bp[ij] = b_ref(i__, j); ++ij; /* L290: */ } /* L300: */ } } dspgvx_(&ibtype, "V", "I", uplo, &n, &ap[1], &bp[1], &vl, &vu, &il, &iu, &abstol, &m, &d__[1], &z__[ z_offset], ldz, &work[1], &iwork[n + 1], &iwork[1] , info); if (iinfo != 0) { io___57.ciunit = *nounit; s_wsfe(&io___57); /* Writing concatenation */ i__6[0] = 10, a__1[0] = "DSPGVX(V,I"; i__6[1] = 1, a__1[1] = uplo; i__6[2] = 1, a__1[2] = ")"; s_cat(ch__3, a__1, i__6, &c__3, (ftnlen)12); do_fio(&c__1, ch__3, (ftnlen)12); do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer)) ; do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer)) ; do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof( integer)); e_wsfe(); *info = abs(iinfo); if (iinfo < 0) { return 0; } else { result[ntest] = ulpinv; goto L310; } } /* Do Test */ dsgt01_(&ibtype, uplo, &n, &m, &a[a_offset], lda, &b[ b_offset], ldb, &z__[z_offset], ldz, &d__[1], & work[1], &result[ntest]); L310: if (ibtype == 1) { /* TEST DSBGV */ ++ntest; /* Copy the matrices into band storage. */ if (lsame_(uplo, "U")) { i__3 = n; for (j = 1; j <= i__3; ++j) { /* Computing MAX */ i__4 = 1, i__5 = j - ka; i__7 = j; for (i__ = max(i__4,i__5); i__ <= i__7; ++i__) { ab_ref(ka + 1 + i__ - j, j) = a_ref(i__, j); /* L320: */ } /* Computing MAX */ i__7 = 1, i__4 = j - kb; i__5 = j; for (i__ = max(i__7,i__4); i__ <= i__5; ++i__) { bb_ref(kb + 1 + i__ - j, j) = b_ref(i__, j); /* L330: */ } /* L340: */ } } else { i__3 = n; for (j = 1; j <= i__3; ++j) { /* Computing MIN */ i__7 = n, i__4 = j + ka; i__5 = min(i__7,i__4); for (i__ = j; i__ <= i__5; ++i__) { ab_ref(i__ + 1 - j, j) = a_ref(i__, j); /* L350: */ } /* Computing MIN */ i__7 = n, i__4 = j + kb; i__5 = min(i__7,i__4); for (i__ = j; i__ <= i__5; ++i__) { bb_ref(i__ + 1 - j, j) = b_ref(i__, j); /* L360: */ } /* L370: */ } } dsbgv_("V", uplo, &n, &ka, &kb, &ab[ab_offset], lda, & bb[bb_offset], ldb, &d__[1], &z__[z_offset], ldz, &work[1], &iinfo); if (iinfo != 0) { io___58.ciunit = *nounit; s_wsfe(&io___58); /* Writing concatenation */ i__6[0] = 8, a__1[0] = "DSBGV(V,"; i__6[1] = 1, a__1[1] = uplo; i__6[2] = 1, a__1[2] = ")"; s_cat(ch__1, a__1, i__6, &c__3, (ftnlen)10); do_fio(&c__1, ch__1, (ftnlen)10); do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)) ; do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof( integer)); do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof( integer)); e_wsfe(); *info = abs(iinfo); if (iinfo < 0) { return 0; } else { result[ntest] = ulpinv; goto L620; } } /* Do Test */ dsgt01_(&ibtype, uplo, &n, &n, &a[a_offset], lda, &b[ b_offset], ldb, &z__[z_offset], ldz, &d__[1], &work[1], &result[ntest]); /* TEST DSBGVD */ ++ntest; /* Copy the matrices into band storage. */ if (lsame_(uplo, "U")) { i__3 = n; for (j = 1; j <= i__3; ++j) { /* Computing MAX */ i__5 = 1, i__7 = j - ka; i__4 = j; for (i__ = max(i__5,i__7); i__ <= i__4; ++i__) { ab_ref(ka + 1 + i__ - j, j) = a_ref(i__, j); /* L380: */ } /* Computing MAX */ i__4 = 1, i__5 = j - kb; i__7 = j; for (i__ = max(i__4,i__5); i__ <= i__7; ++i__) { bb_ref(kb + 1 + i__ - j, j) = b_ref(i__, j); /* L390: */ } /* L400: */ } } else { i__3 = n; for (j = 1; j <= i__3; ++j) { /* Computing MIN */ i__4 = n, i__5 = j + ka; i__7 = min(i__4,i__5); for (i__ = j; i__ <= i__7; ++i__) { ab_ref(i__ + 1 - j, j) = a_ref(i__, j); /* L410: */ } /* Computing MIN */ i__4 = n, i__5 = j + kb; i__7 = min(i__4,i__5); for (i__ = j; i__ <= i__7; ++i__) { bb_ref(i__ + 1 - j, j) = b_ref(i__, j); /* L420: */ } /* L430: */ } } dsbgvd_("V", uplo, &n, &ka, &kb, &ab[ab_offset], lda, &bb[bb_offset], ldb, &d__[1], &z__[z_offset], ldz, &work[1], nwork, &iwork[1], liwork, & iinfo); if (iinfo != 0) { io___59.ciunit = *nounit; s_wsfe(&io___59); /* Writing concatenation */ i__6[0] = 9, a__1[0] = "DSBGVD(V,"; i__6[1] = 1, a__1[1] = uplo; i__6[2] = 1, a__1[2] = ")"; s_cat(ch__2, a__1, i__6, &c__3, (ftnlen)11); do_fio(&c__1, ch__2, (ftnlen)11); do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)) ; do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof( integer)); do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof( integer)); e_wsfe(); *info = abs(iinfo); if (iinfo < 0) { return 0; } else { result[ntest] = ulpinv; goto L620; } } /* Do Test */ dsgt01_(&ibtype, uplo, &n, &n, &a[a_offset], lda, &b[ b_offset], ldb, &z__[z_offset], ldz, &d__[1], &work[1], &result[ntest]); /* Test DSBGVX */ ++ntest; /* Copy the matrices into band storage. */ if (lsame_(uplo, "U")) { i__3 = n; for (j = 1; j <= i__3; ++j) { /* Computing MAX */ i__7 = 1, i__4 = j - ka; i__5 = j; for (i__ = max(i__7,i__4); i__ <= i__5; ++i__) { ab_ref(ka + 1 + i__ - j, j) = a_ref(i__, j); /* L440: */ } /* Computing MAX */ i__5 = 1, i__7 = j - kb; i__4 = j; for (i__ = max(i__5,i__7); i__ <= i__4; ++i__) { bb_ref(kb + 1 + i__ - j, j) = b_ref(i__, j); /* L450: */ } /* L460: */ } } else { i__3 = n; for (j = 1; j <= i__3; ++j) { /* Computing MIN */ i__5 = n, i__7 = j + ka; i__4 = min(i__5,i__7); for (i__ = j; i__ <= i__4; ++i__) { ab_ref(i__ + 1 - j, j) = a_ref(i__, j); /* L470: */ } /* Computing MIN */ i__5 = n, i__7 = j + kb; i__4 = min(i__5,i__7); for (i__ = j; i__ <= i__4; ++i__) { bb_ref(i__ + 1 - j, j) = b_ref(i__, j); /* L480: */ } /* L490: */ } } i__3 = max(1,n); dsbgvx_("V", "A", uplo, &n, &ka, &kb, &ab[ab_offset], lda, &bb[bb_offset], ldb, &bp[1], &i__3, &vl, &vu, &il, &iu, &abstol, &m, &d__[1], &z__[ z_offset], ldz, &work[1], &iwork[n + 1], & iwork[1], &iinfo); if (iinfo != 0) { io___60.ciunit = *nounit; s_wsfe(&io___60); /* Writing concatenation */ i__6[0] = 10, a__1[0] = "DSBGVX(V,A"; i__6[1] = 1, a__1[1] = uplo; i__6[2] = 1, a__1[2] = ")"; s_cat(ch__3, a__1, i__6, &c__3, (ftnlen)12); do_fio(&c__1, ch__3, (ftnlen)12); do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)) ; do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof( integer)); do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof( integer)); e_wsfe(); *info = abs(iinfo); if (iinfo < 0) { return 0; } else { result[ntest] = ulpinv; goto L620; } } /* Do Test */ dsgt01_(&ibtype, uplo, &n, &m, &a[a_offset], lda, &b[ b_offset], ldb, &z__[z_offset], ldz, &d__[1], &work[1], &result[ntest]); ++ntest; /* Copy the matrices into band storage. */ if (lsame_(uplo, "U")) { i__3 = n; for (j = 1; j <= i__3; ++j) { /* Computing MAX */ i__4 = 1, i__5 = j - ka; i__7 = j; for (i__ = max(i__4,i__5); i__ <= i__7; ++i__) { ab_ref(ka + 1 + i__ - j, j) = a_ref(i__, j); /* L500: */ } /* Computing MAX */ i__7 = 1, i__4 = j - kb; i__5 = j; for (i__ = max(i__7,i__4); i__ <= i__5; ++i__) { bb_ref(kb + 1 + i__ - j, j) = b_ref(i__, j); /* L510: */ } /* L520: */ } } else { i__3 = n; for (j = 1; j <= i__3; ++j) { /* Computing MIN */ i__7 = n, i__4 = j + ka; i__5 = min(i__7,i__4); for (i__ = j; i__ <= i__5; ++i__) { ab_ref(i__ + 1 - j, j) = a_ref(i__, j); /* L530: */ } /* Computing MIN */ i__7 = n, i__4 = j + kb; i__5 = min(i__7,i__4); for (i__ = j; i__ <= i__5; ++i__) { bb_ref(i__ + 1 - j, j) = b_ref(i__, j); /* L540: */ } /* L550: */ } } vl = 0.; vu = anorm; i__3 = max(1,n); dsbgvx_("V", "V", uplo, &n, &ka, &kb, &ab[ab_offset], lda, &bb[bb_offset], ldb, &bp[1], &i__3, &vl, &vu, &il, &iu, &abstol, &m, &d__[1], &z__[ z_offset], ldz, &work[1], &iwork[n + 1], & iwork[1], &iinfo); if (iinfo != 0) { io___61.ciunit = *nounit; s_wsfe(&io___61); /* Writing concatenation */ i__6[0] = 10, a__1[0] = "DSBGVX(V,V"; i__6[1] = 1, a__1[1] = uplo; i__6[2] = 1, a__1[2] = ")"; s_cat(ch__3, a__1, i__6, &c__3, (ftnlen)12); do_fio(&c__1, ch__3, (ftnlen)12); do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)) ; do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof( integer)); do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof( integer)); e_wsfe(); *info = abs(iinfo); if (iinfo < 0) { return 0; } else { result[ntest] = ulpinv; goto L620; } } /* Do Test */ dsgt01_(&ibtype, uplo, &n, &m, &a[a_offset], lda, &b[ b_offset], ldb, &z__[z_offset], ldz, &d__[1], &work[1], &result[ntest]); ++ntest; /* Copy the matrices into band storage. */ if (lsame_(uplo, "U")) { i__3 = n; for (j = 1; j <= i__3; ++j) { /* Computing MAX */ i__5 = 1, i__7 = j - ka; i__4 = j; for (i__ = max(i__5,i__7); i__ <= i__4; ++i__) { ab_ref(ka + 1 + i__ - j, j) = a_ref(i__, j); /* L560: */ } /* Computing MAX */ i__4 = 1, i__5 = j - kb; i__7 = j; for (i__ = max(i__4,i__5); i__ <= i__7; ++i__) { bb_ref(kb + 1 + i__ - j, j) = b_ref(i__, j); /* L570: */ } /* L580: */ } } else { i__3 = n; for (j = 1; j <= i__3; ++j) { /* Computing MIN */ i__4 = n, i__5 = j + ka; i__7 = min(i__4,i__5); for (i__ = j; i__ <= i__7; ++i__) { ab_ref(i__ + 1 - j, j) = a_ref(i__, j); /* L590: */ } /* Computing MIN */ i__4 = n, i__5 = j + kb; i__7 = min(i__4,i__5); for (i__ = j; i__ <= i__7; ++i__) { bb_ref(i__ + 1 - j, j) = b_ref(i__, j); /* L600: */ } /* L610: */ } } i__3 = max(1,n); dsbgvx_("V", "I", uplo, &n, &ka, &kb, &ab[ab_offset], lda, &bb[bb_offset], ldb, &bp[1], &i__3, &vl, &vu, &il, &iu, &abstol, &m, &d__[1], &z__[ z_offset], ldz, &work[1], &iwork[n + 1], & iwork[1], &iinfo); if (iinfo != 0) { io___62.ciunit = *nounit; s_wsfe(&io___62); /* Writing concatenation */ i__6[0] = 10, a__1[0] = "DSBGVX(V,I"; i__6[1] = 1, a__1[1] = uplo; i__6[2] = 1, a__1[2] = ")"; s_cat(ch__3, a__1, i__6, &c__3, (ftnlen)12); do_fio(&c__1, ch__3, (ftnlen)12); do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)) ; do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof( integer)); do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof( integer)); e_wsfe(); *info = abs(iinfo); if (iinfo < 0) { return 0; } else { result[ntest] = ulpinv; goto L620; } } /* Do Test */ dsgt01_(&ibtype, uplo, &n, &m, &a[a_offset], lda, &b[ b_offset], ldb, &z__[z_offset], ldz, &d__[1], &work[1], &result[ntest]); } L620: ; } /* L630: */ } /* End of Loop -- Check for RESULT(j) > THRESH */ ntestt += ntest; dlafts_("DSG", &n, &n, &jtype, &ntest, &result[1], ioldsd, thresh, nounit, &nerrs); L640: ; } /* L650: */ } /* Summary */ dlasum_("DSG", nounit, &nerrs, &ntestt); return 0; /* End of DDRVSG */ } /* ddrvsg_ */ #undef bb_ref #undef ab_ref #undef b_ref #undef a_ref