#include "blaswrap.h" /* -- translated by f2c (version 19990503). You must link the resulting object file with the libraries: -lf2c -lm (in that order) */ #include "f2c.h" /* Table of constant values */ static complex c_b1 = {0.f,0.f}; static complex c_b2 = {1.f,0.f}; static integer c__0 = 0; static integer c__4 = 4; static integer c__6 = 6; static real c_b39 = 1.f; static integer c__1 = 1; static real c_b49 = 0.f; static integer c__2 = 2; static logical c_false = FALSE_; static integer c__3 = 3; static logical c_true = TRUE_; static integer c__22 = 22; /* Subroutine */ int cdrvvx_(integer *nsizes, integer *nn, integer *ntypes, logical *dotype, integer *iseed, real *thresh, integer *niunit, integer *nounit, complex *a, integer *lda, complex *h__, complex *w, complex *w1, complex *vl, integer *ldvl, complex *vr, integer *ldvr, complex *lre, integer *ldlre, real *rcondv, real *rcndv1, real * rcdvin, real *rconde, real *rcnde1, real *rcdein, real *scale, real * scale1, real *result, complex *work, integer *nwork, real *rwork, integer *info) { /* Initialized data */ static integer ktype[21] = { 1,2,3,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,9,9,9 }; static integer kmagn[21] = { 1,1,1,1,1,1,2,3,1,1,1,1,1,1,1,1,2,3,1,2,3 }; static integer kmode[21] = { 0,0,0,4,3,1,4,4,4,3,1,5,4,3,1,5,5,5,4,3,1 }; static integer kconds[21] = { 0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,2,2,0,0,0 }; static char bal[1*4] = "N" "P" "S" "B"; /* Format strings */ static char fmt_9992[] = "(\002 CDRVVX: \002,a,\002 returned INFO=\002,i" "6,\002.\002,/9x,\002N=\002,i6,\002, JTYPE=\002,i6,\002, ISEED=" "(\002,3(i5,\002,\002),i5,\002)\002)"; static char fmt_9999[] = "(/1x,a3,\002 -- Complex Eigenvalue-Eigenvect" "or \002,\002Decomposition Expert Driver\002,/\002 Matrix types (" "see CDRVVX for details): \002)"; static char fmt_9998[] = "(/\002 Special Matrices:\002,/\002 1=Zero mat" "rix. \002,\002 \002,\002 5=Diagonal: geom" "etr. spaced entries.\002,/\002 2=Identity matrix. " " \002,\002 6=Diagona\002,\002l: clustered entries.\002," "/\002 3=Transposed Jordan block. \002,\002 \002,\002 " " 7=Diagonal: large, evenly spaced.\002,/\002 \002,\0024=Diagona" "l: evenly spaced entries. \002,\002 8=Diagonal: s\002,\002ma" "ll, evenly spaced.\002)"; static char fmt_9997[] = "(\002 Dense, Non-Symmetric Matrices:\002,/\002" " 9=Well-cond., ev\002,\002enly spaced eigenvals.\002,\002 14=Il" "l-cond., geomet. spaced e\002,\002igenals.\002,/\002 10=Well-con" "d., geom. spaced eigenvals. \002,\002 15=Ill-conditioned, cluste" "red e.vals.\002,/\002 11=Well-cond\002,\002itioned, clustered e." "vals. \002,\002 16=Ill-cond., random comp\002,\002lex \002,/\002" " 12=Well-cond., random complex \002,\002 \002,\002 17=Il" "l-cond., large rand. complx \002,/\002 13=Ill-condi\002,\002tion" "ed, evenly spaced. \002,\002 18=Ill-cond., small rand.\002" ",\002 complx \002)"; static char fmt_9996[] = "(\002 19=Matrix with random O(1) entries. " " \002,\002 21=Matrix \002,\002with small random entries.\002," "/\002 20=Matrix with large ran\002,\002dom entries. \002,\002 " "22=Matrix read from input file\002,/)"; static char fmt_9995[] = "(\002 Tests performed with test threshold =" "\002,f8.2,//\002 1 = | A VR - VR W | / ( n |A| ulp ) \002,/\002 " "2 = | transpose(A) VL - VL W | / ( n |A| ulp ) \002,/\002 3 = | " "|VR(i)| - 1 | / ulp \002,/\002 4 = | |VL(i)| - 1 | / ulp \002," "/\002 5 = 0 if W same no matter if VR or VL computed,\002,\002 1" "/ulp otherwise\002,/\002 6 = 0 if VR same no matter what else co" "mputed,\002,\002 1/ulp otherwise\002,/\002 7 = 0 if VL same no " "matter what else computed,\002,\002 1/ulp otherwise\002,/\002 8" " = 0 if RCONDV same no matter what else computed,\002,\002 1/ul" "p otherwise\002,/\002 9 = 0 if SCALE, ILO, IHI, ABNRM same no ma" "tter what else\002,\002 computed, 1/ulp otherwise\002,/\002 10 " "= | RCONDV - RCONDV(precomputed) | / cond(RCONDV),\002,/\002 11 " "= | RCONDE - RCONDE(precomputed) | / cond(RCONDE),\002)"; static char fmt_9994[] = "(\002 BALANC='\002,a1,\002',N=\002,i4,\002,I" "WK=\002,i1,\002, seed=\002,4(i4,\002,\002),\002 type \002,i2," "\002, test(\002,i2,\002)=\002,g10.3)"; static char fmt_9993[] = "(\002 N=\002,i5,\002, input example =\002,i3" ",\002, test(\002,i2,\002)=\002,g10.3)"; /* System generated locals */ integer a_dim1, a_offset, h_dim1, h_offset, lre_dim1, lre_offset, vl_dim1, vl_offset, vr_dim1, vr_offset, i__1, i__2, i__3, i__4; complex q__1; /* Builtin functions Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen); double sqrt(doublereal); integer s_wsfe(cilist *), do_fio(integer *, char *, ftnlen), e_wsfe(void), s_rsle(cilist *), do_lio(integer *, integer *, char *, ftnlen), e_rsle(void); /* Local variables */ static integer ibal; static real cond; static integer jcol; static char path[3]; static integer nmax; static real unfl, ovfl; static integer isrt, i__, j, n; static logical badnn; static integer nfail; extern /* Subroutine */ int cget23_(logical *, integer *, char *, integer *, real *, integer *, integer *, integer *, complex *, integer *, complex *, complex *, complex *, complex *, integer *, complex *, integer *, complex *, integer *, real *, real *, real *, real *, real *, real *, real *, real *, real *, complex *, integer *, real *, integer *); static integer imode, iinfo; static real conds, anorm; static integer jsize, nerrs, itype, jtype, ntest; static real rtulp; static char balanc[1]; extern /* Subroutine */ int slabad_(real *, real *); static real wi; extern /* Subroutine */ int clatme_(integer *, char *, integer *, complex *, integer *, real *, complex *, char *, char *, char *, char *, real *, integer *, real *, integer *, integer *, real *, complex * , integer *, complex *, integer *); extern doublereal slamch_(char *); static real wr; extern /* Subroutine */ int claset_(char *, integer *, integer *, complex *, complex *, complex *, integer *); static integer idumma[1]; extern /* Subroutine */ int xerbla_(char *, integer *); static integer ioldsd[4]; extern /* Subroutine */ int clatmr_(integer *, integer *, char *, integer *, char *, complex *, integer *, real *, complex *, char *, char * , complex *, integer *, real *, complex *, integer *, real *, char *, integer *, integer *, integer *, real *, real *, char *, complex *, integer *, integer *, integer *), clatms_(integer *, integer *, char *, integer *, char *, real *, integer *, real *, real *, integer *, integer *, char *, complex *, integer *, complex *, integer *); static integer ntestf; extern /* Subroutine */ int slasum_(char *, integer *, integer *, integer *); static integer nnwork; static real rtulpi; static integer mtypes, ntestt; static real ulpinv; static integer iwk; static real ulp; /* Fortran I/O blocks */ static cilist io___32 = { 0, 0, 0, fmt_9992, 0 }; static cilist io___39 = { 0, 0, 0, fmt_9999, 0 }; static cilist io___40 = { 0, 0, 0, fmt_9998, 0 }; static cilist io___41 = { 0, 0, 0, fmt_9997, 0 }; static cilist io___42 = { 0, 0, 0, fmt_9996, 0 }; static cilist io___43 = { 0, 0, 0, fmt_9995, 0 }; static cilist io___44 = { 0, 0, 0, fmt_9994, 0 }; static cilist io___45 = { 0, 0, 1, 0, 0 }; static cilist io___48 = { 0, 0, 0, 0, 0 }; static cilist io___49 = { 0, 0, 0, 0, 0 }; static cilist io___52 = { 0, 0, 0, fmt_9999, 0 }; static cilist io___53 = { 0, 0, 0, fmt_9998, 0 }; static cilist io___54 = { 0, 0, 0, fmt_9997, 0 }; static cilist io___55 = { 0, 0, 0, fmt_9996, 0 }; static cilist io___56 = { 0, 0, 0, fmt_9995, 0 }; static cilist io___57 = { 0, 0, 0, fmt_9993, 0 }; #define a_subscr(a_1,a_2) (a_2)*a_dim1 + a_1 #define a_ref(a_1,a_2) a[a_subscr(a_1,a_2)] /* -- LAPACK test routine (version 3.0) -- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., Courant Institute, Argonne National Lab, and Rice University September 30, 1994 Purpose ======= CDRVVX checks the nonsymmetric eigenvalue problem expert driver CGEEVX. CDRVVX uses both test matrices generated randomly depending on data supplied in the calling sequence, as well as on data read from an input file and including precomputed condition numbers to which it compares the ones it computes. When CDRVVX is called, a number of matrix "sizes" ("n's") and a number of matrix "types" are specified in the calling sequence. For each size ("n") and each type of matrix, one matrix will be generated and used to test the nonsymmetric eigenroutines. For each matrix, 9 tests will be performed: (1) | A * VR - VR * W | / ( n |A| ulp ) Here VR is the matrix of unit right eigenvectors. W is a diagonal matrix with diagonal entries W(j). (2) | A**H * VL - VL * W**H | / ( n |A| ulp ) Here VL is the matrix of unit left eigenvectors, A**H is the conjugate transpose of A, and W is as above. (3) | |VR(i)| - 1 | / ulp and largest component real VR(i) denotes the i-th column of VR. (4) | |VL(i)| - 1 | / ulp and largest component real VL(i) denotes the i-th column of VL. (5) W(full) = W(partial) W(full) denotes the eigenvalues computed when VR, VL, RCONDV and RCONDE are also computed, and W(partial) denotes the eigenvalues computed when only some of VR, VL, RCONDV, and RCONDE are computed. (6) VR(full) = VR(partial) VR(full) denotes the right eigenvectors computed when VL, RCONDV and RCONDE are computed, and VR(partial) denotes the result when only some of VL and RCONDV are computed. (7) VL(full) = VL(partial) VL(full) denotes the left eigenvectors computed when VR, RCONDV and RCONDE are computed, and VL(partial) denotes the result when only some of VR and RCONDV are computed. (8) 0 if SCALE, ILO, IHI, ABNRM (full) = SCALE, ILO, IHI, ABNRM (partial) 1/ulp otherwise SCALE, ILO, IHI and ABNRM describe how the matrix is balanced. (full) is when VR, VL, RCONDE and RCONDV are also computed, and (partial) is when some are not computed. (9) RCONDV(full) = RCONDV(partial) RCONDV(full) denotes the reciprocal condition numbers of the right eigenvectors computed when VR, VL and RCONDE are also computed. RCONDV(partial) denotes the reciprocal condition numbers when only some of VR, VL and RCONDE are computed. The "sizes" are specified by an array NN(1:NSIZES); the value of each element NN(j) specifies one size. The "types" are specified by a logical array DOTYPE( 1:NTYPES ); if DOTYPE(j) is .TRUE., then matrix type "j" will be generated. Currently, the list of possible types is: (1) The zero matrix. (2) The identity matrix. (3) A (transposed) Jordan block, with 1's on the diagonal. (4) A diagonal matrix with evenly spaced entries 1, ..., ULP and random complex angles. (ULP = (first number larger than 1) - 1 ) (5) A diagonal matrix with geometrically spaced entries 1, ..., ULP and random complex angles. (6) A diagonal matrix with "clustered" entries 1, ULP, ..., ULP and random complex angles. (7) Same as (4), but multiplied by a constant near the overflow threshold (8) Same as (4), but multiplied by a constant near the underflow threshold (9) A matrix of the form U' T U, where U is unitary and T has evenly spaced entries 1, ..., ULP with random complex angles on the diagonal and random O(1) entries in the upper triangle. (10) A matrix of the form U' T U, where U is unitary and T has geometrically spaced entries 1, ..., ULP with random complex angles on the diagonal and random O(1) entries in the upper triangle. (11) A matrix of the form U' T U, where U is unitary and T has "clustered" entries 1, ULP,..., ULP with random complex angles on the diagonal and random O(1) entries in the upper triangle. (12) A matrix of the form U' T U, where U is unitary and T has complex eigenvalues randomly chosen from ULP < |z| < 1 and random O(1) entries in the upper triangle. (13) A matrix of the form X' T X, where X has condition SQRT( ULP ) and T has evenly spaced entries 1, ..., ULP with random complex angles on the diagonal and random O(1) entries in the upper triangle. (14) A matrix of the form X' T X, where X has condition SQRT( ULP ) and T has geometrically spaced entries 1, ..., ULP with random complex angles on the diagonal and random O(1) entries in the upper triangle. (15) A matrix of the form X' T X, where X has condition SQRT( ULP ) and T has "clustered" entries 1, ULP,..., ULP with random complex angles on the diagonal and random O(1) entries in the upper triangle. (16) A matrix of the form X' T X, where X has condition SQRT( ULP ) and T has complex eigenvalues randomly chosen from ULP < |z| < 1 and random O(1) entries in the upper triangle. (17) Same as (16), but multiplied by a constant near the overflow threshold (18) Same as (16), but multiplied by a constant near the underflow threshold (19) Nonsymmetric matrix with random entries chosen from |z| < 1 If N is at least 4, all entries in first two rows and last row, and first column and last two columns are zero. (20) Same as (19), but multiplied by a constant near the overflow threshold (21) Same as (19), but multiplied by a constant near the underflow threshold In addition, an input file will be read from logical unit number NIUNIT. The file contains matrices along with precomputed eigenvalues and reciprocal condition numbers for the eigenvalues and right eigenvectors. For these matrices, in addition to tests (1) to (9) we will compute the following two tests: (10) |RCONDV - RCDVIN| / cond(RCONDV) RCONDV is the reciprocal right eigenvector condition number computed by CGEEVX and RCDVIN (the precomputed true value) is supplied as input. cond(RCONDV) is the condition number of RCONDV, and takes errors in computing RCONDV into account, so that the resulting quantity should be O(ULP). cond(RCONDV) is essentially given by norm(A)/RCONDE. (11) |RCONDE - RCDEIN| / cond(RCONDE) RCONDE is the reciprocal eigenvalue condition number computed by CGEEVX and RCDEIN (the precomputed true value) is supplied as input. cond(RCONDE) is the condition number of RCONDE, and takes errors in computing RCONDE into account, so that the resulting quantity should be O(ULP). cond(RCONDE) is essentially given by norm(A)/RCONDV. Arguments ========== NSIZES (input) INTEGER The number of sizes of matrices to use. NSIZES must be at least zero. If it is zero, no randomly generated matrices are tested, but any test matrices read from NIUNIT will be tested. NN (input) INTEGER array, dimension (NSIZES) An array containing the sizes to be used for the matrices. Zero values will be skipped. The values must be at least zero. NTYPES (input) INTEGER The number of elements in DOTYPE. NTYPES must be at least zero. If it is zero, no randomly generated test matrices are tested, but and test matrices read from NIUNIT will be tested. If it is MAXTYP+1 and NSIZES is 1, then an additional type, MAXTYP+1 is defined, which is to use whatever matrix is in A. This is only useful if DOTYPE(1:MAXTYP) is .FALSE. and DOTYPE(MAXTYP+1) is .TRUE. . DOTYPE (input) LOGICAL array, dimension (NTYPES) If DOTYPE(j) is .TRUE., then for each size in NN a matrix of that size and of type j will be generated. If NTYPES is smaller than the maximum number of types defined (PARAMETER MAXTYP), then types NTYPES+1 through MAXTYP will not be generated. If NTYPES is larger than MAXTYP, DOTYPE(MAXTYP+1) through DOTYPE(NTYPES) will be ignored. ISEED (input/output) INTEGER array, dimension (4) On entry ISEED specifies the seed of the random number generator. The array elements should be between 0 and 4095; if not they will be reduced mod 4096. Also, ISEED(4) must be odd. The random number generator uses a linear congruential sequence limited to small integers, and so should produce machine independent random numbers. The values of ISEED are changed on exit, and can be used in the next call to CDRVVX to continue the same random number sequence. THRESH (input) REAL A test will count as "failed" if the "error", computed as described above, exceeds THRESH. Note that the error is scaled to be O(1), so THRESH should be a reasonably small multiple of 1, e.g., 10 or 100. In particular, it should not depend on the precision (single vs. double) or the size of the matrix. It must be at least zero. NIUNIT (input) INTEGER The FORTRAN unit number for reading in the data file of problems to solve. NOUNIT (input) INTEGER The FORTRAN unit number for printing out error messages (e.g., if a routine returns INFO not equal to 0.) A (workspace) COMPLEX array, dimension (LDA, max(NN,12)) Used to hold the matrix whose eigenvalues are to be computed. On exit, A contains the last matrix actually used. LDA (input) INTEGER The leading dimension of A, and H. LDA must be at least 1 and at least max( NN, 12 ). (12 is the dimension of the largest matrix on the precomputed input file.) H (workspace) COMPLEX array, dimension (LDA, max(NN,12)) Another copy of the test matrix A, modified by CGEEVX. W (workspace) COMPLEX array, dimension (max(NN,12)) Contains the eigenvalues of A. W1 (workspace) COMPLEX array, dimension (max(NN,12)) Like W, this array contains the eigenvalues of A, but those computed when CGEEVX only computes a partial eigendecomposition, i.e. not the eigenvalues and left and right eigenvectors. VL (workspace) COMPLEX array, dimension (LDVL, max(NN,12)) VL holds the computed left eigenvectors. LDVL (input) INTEGER Leading dimension of VL. Must be at least max(1,max(NN,12)). VR (workspace) COMPLEX array, dimension (LDVR, max(NN,12)) VR holds the computed right eigenvectors. LDVR (input) INTEGER Leading dimension of VR. Must be at least max(1,max(NN,12)). LRE (workspace) COMPLEX array, dimension (LDLRE, max(NN,12)) LRE holds the computed right or left eigenvectors. LDLRE (input) INTEGER Leading dimension of LRE. Must be at least max(1,max(NN,12)) RESULT (output) REAL array, dimension (11) The values computed by the seven tests described above. The values are currently limited to 1/ulp, to avoid overflow. WORK (workspace) COMPLEX array, dimension (NWORK) NWORK (input) INTEGER The number of entries in WORK. This must be at least max(6*12+2*12**2,6*NN(j)+2*NN(j)**2) = max( 360 ,6*NN(j)+2*NN(j)**2) for all j. RWORK (workspace) REAL array, dimension (2*max(NN,12)) INFO (output) INTEGER If 0, then successful exit. If <0, then input paramter -INFO is incorrect. If >0, CLATMR, CLATMS, CLATME or CGET23 returned an error code, and INFO is its absolute value. ----------------------------------------------------------------------- Some Local Variables and Parameters: ---- ----- --------- --- ---------- ZERO, ONE Real 0 and 1. MAXTYP The number of types defined. NMAX Largest value in NN or 12. NERRS The number of tests which have exceeded THRESH COND, CONDS, IMODE Values to be passed to the matrix generators. ANORM Norm of A; passed to matrix generators. OVFL, UNFL Overflow and underflow thresholds. ULP, ULPINV Finest relative precision and its inverse. RTULP, RTULPI Square roots of the previous 4 values. The following four arrays decode JTYPE: KTYPE(j) The general type (1-10) for type "j". KMODE(j) The MODE value to be passed to the matrix generator for type "j". KMAGN(j) The order of magnitude ( O(1), O(overflow^(1/2) ), O(underflow^(1/2) ) KCONDS(j) Selectw whether CONDS is to be 1 or 1/sqrt(ulp). (0 means irrelevant.) ===================================================================== Parameter adjustments */ --nn; --dotype; --iseed; h_dim1 = *lda; h_offset = 1 + h_dim1 * 1; h__ -= h_offset; a_dim1 = *lda; a_offset = 1 + a_dim1 * 1; a -= a_offset; --w; --w1; vl_dim1 = *ldvl; vl_offset = 1 + vl_dim1 * 1; vl -= vl_offset; vr_dim1 = *ldvr; vr_offset = 1 + vr_dim1 * 1; vr -= vr_offset; lre_dim1 = *ldlre; lre_offset = 1 + lre_dim1 * 1; lre -= lre_offset; --rcondv; --rcndv1; --rcdvin; --rconde; --rcnde1; --rcdein; --scale; --scale1; --result; --work; --rwork; /* Function Body */ s_copy(path, "Complex precision", (ftnlen)1, (ftnlen)17); s_copy(path + 1, "VX", (ftnlen)2, (ftnlen)2); /* Check for errors */ ntestt = 0; ntestf = 0; *info = 0; /* Important constants */ badnn = FALSE_; /* 7 is the largest dimension in the input file of precomputed problems */ nmax = 7; i__1 = *nsizes; for (j = 1; j <= i__1; ++j) { /* Computing MAX */ i__2 = nmax, i__3 = nn[j]; nmax = max(i__2,i__3); if (nn[j] < 0) { badnn = TRUE_; } /* L10: */ } /* Check for errors */ if (*nsizes < 0) { *info = -1; } else if (badnn) { *info = -2; } else if (*ntypes < 0) { *info = -3; } else if (*thresh < 0.f) { *info = -6; } else if (*lda < 1 || *lda < nmax) { *info = -10; } else if (*ldvl < 1 || *ldvl < nmax) { *info = -15; } else if (*ldvr < 1 || *ldvr < nmax) { *info = -17; } else if (*ldlre < 1 || *ldlre < nmax) { *info = -19; } else /* if(complicated condition) */ { /* Computing 2nd power */ i__1 = nmax; if (nmax * 6 + (i__1 * i__1 << 1) > *nwork) { *info = -30; } } if (*info != 0) { i__1 = -(*info); xerbla_("CDRVVX", &i__1); return 0; } /* If nothing to do check on NIUNIT */ if (*nsizes == 0 || *ntypes == 0) { goto L160; } /* More Important constants */ unfl = slamch_("Safe minimum"); ovfl = 1.f / unfl; slabad_(&unfl, &ovfl); ulp = slamch_("Precision"); ulpinv = 1.f / ulp; rtulp = sqrt(ulp); rtulpi = 1.f / rtulp; /* Loop over sizes, types */ nerrs = 0; i__1 = *nsizes; for (jsize = 1; jsize <= i__1; ++jsize) { n = nn[jsize]; if (*nsizes != 1) { mtypes = min(21,*ntypes); } else { mtypes = min(22,*ntypes); } i__2 = mtypes; for (jtype = 1; jtype <= i__2; ++jtype) { if (! dotype[jtype]) { goto L140; } /* Save ISEED in case of an error. */ for (j = 1; j <= 4; ++j) { ioldsd[j - 1] = iseed[j]; /* L20: */ } /* Compute "A" Control parameters: KMAGN KCONDS KMODE KTYPE =1 O(1) 1 clustered 1 zero =2 large large clustered 2 identity =3 small exponential Jordan =4 arithmetic diagonal, (w/ eigenvalues) =5 random log symmetric, w/ eigenvalues =6 random general, w/ eigenvalues =7 random diagonal =8 random symmetric =9 random general =10 random triangular */ if (mtypes > 21) { goto L90; } itype = ktype[jtype - 1]; imode = kmode[jtype - 1]; /* Compute norm */ switch (kmagn[jtype - 1]) { case 1: goto L30; case 2: goto L40; case 3: goto L50; } L30: anorm = 1.f; goto L60; L40: anorm = ovfl * ulp; goto L60; L50: anorm = unfl * ulpinv; goto L60; L60: claset_("Full", lda, &n, &c_b1, &c_b1, &a[a_offset], lda); iinfo = 0; cond = ulpinv; /* Special Matrices -- Identity & Jordan block Zero */ if (itype == 1) { iinfo = 0; } else if (itype == 2) { /* Identity */ i__3 = n; for (jcol = 1; jcol <= i__3; ++jcol) { i__4 = a_subscr(jcol, jcol); a[i__4].r = anorm, a[i__4].i = 0.f; /* L70: */ } } else if (itype == 3) { /* Jordan Block */ i__3 = n; for (jcol = 1; jcol <= i__3; ++jcol) { i__4 = a_subscr(jcol, jcol); a[i__4].r = anorm, a[i__4].i = 0.f; if (jcol > 1) { i__4 = a_subscr(jcol, jcol - 1); a[i__4].r = 1.f, a[i__4].i = 0.f; } /* L80: */ } } else if (itype == 4) { /* Diagonal Matrix, [Eigen]values Specified */ clatms_(&n, &n, "S", &iseed[1], "H", &rwork[1], &imode, &cond, &anorm, &c__0, &c__0, "N", &a[a_offset], lda, &work[ n + 1], &iinfo); } else if (itype == 5) { /* Symmetric, eigenvalues specified */ clatms_(&n, &n, "S", &iseed[1], "H", &rwork[1], &imode, &cond, &anorm, &n, &n, "N", &a[a_offset], lda, &work[n + 1], &iinfo); } else if (itype == 6) { /* General, eigenvalues specified */ if (kconds[jtype - 1] == 1) { conds = 1.f; } else if (kconds[jtype - 1] == 2) { conds = rtulpi; } else { conds = 0.f; } clatme_(&n, "D", &iseed[1], &work[1], &imode, &cond, &c_b2, " ", "T", "T", "T", &rwork[1], &c__4, &conds, &n, &n, &anorm, &a[a_offset], lda, &work[(n << 1) + 1], & iinfo); } else if (itype == 7) { /* Diagonal, random eigenvalues */ clatmr_(&n, &n, "D", &iseed[1], "S", &work[1], &c__6, &c_b39, &c_b2, "T", "N", &work[n + 1], &c__1, &c_b39, &work[( n << 1) + 1], &c__1, &c_b39, "N", idumma, &c__0, & c__0, &c_b49, &anorm, "NO", &a[a_offset], lda, idumma, &iinfo); } else if (itype == 8) { /* Symmetric, random eigenvalues */ clatmr_(&n, &n, "D", &iseed[1], "H", &work[1], &c__6, &c_b39, &c_b2, "T", "N", &work[n + 1], &c__1, &c_b39, &work[( n << 1) + 1], &c__1, &c_b39, "N", idumma, &n, &n, & c_b49, &anorm, "NO", &a[a_offset], lda, idumma, & iinfo); } else if (itype == 9) { /* General, random eigenvalues */ clatmr_(&n, &n, "D", &iseed[1], "N", &work[1], &c__6, &c_b39, &c_b2, "T", "N", &work[n + 1], &c__1, &c_b39, &work[( n << 1) + 1], &c__1, &c_b39, "N", idumma, &n, &n, & c_b49, &anorm, "NO", &a[a_offset], lda, idumma, & iinfo); if (n >= 4) { claset_("Full", &c__2, &n, &c_b1, &c_b1, &a[a_offset], lda); i__3 = n - 3; claset_("Full", &i__3, &c__1, &c_b1, &c_b1, &a_ref(3, 1), lda); i__3 = n - 3; claset_("Full", &i__3, &c__2, &c_b1, &c_b1, &a_ref(3, n - 1), lda); claset_("Full", &c__1, &n, &c_b1, &c_b1, &a_ref(n, 1), lda); } } else if (itype == 10) { /* Triangular, random eigenvalues */ clatmr_(&n, &n, "D", &iseed[1], "N", &work[1], &c__6, &c_b39, &c_b2, "T", "N", &work[n + 1], &c__1, &c_b39, &work[( n << 1) + 1], &c__1, &c_b39, "N", idumma, &n, &c__0, & c_b49, &anorm, "NO", &a[a_offset], lda, idumma, & iinfo); } else { iinfo = 1; } if (iinfo != 0) { io___32.ciunit = *nounit; s_wsfe(&io___32); do_fio(&c__1, "Generator", (ftnlen)9); do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer)); do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer)); e_wsfe(); *info = abs(iinfo); return 0; } L90: /* Test for minimal and generous workspace */ for (iwk = 1; iwk <= 3; ++iwk) { if (iwk == 1) { nnwork = n << 1; } else if (iwk == 2) { /* Computing 2nd power */ i__3 = n; nnwork = (n << 1) + i__3 * i__3; } else { /* Computing 2nd power */ i__3 = n; nnwork = n * 6 + (i__3 * i__3 << 1); } nnwork = max(nnwork,1); /* Test for all balancing options */ for (ibal = 1; ibal <= 4; ++ibal) { *(unsigned char *)balanc = *(unsigned char *)&bal[ibal - 1]; /* Perform tests */ cget23_(&c_false, &c__0, balanc, &jtype, thresh, ioldsd, nounit, &n, &a[a_offset], lda, &h__[h_offset], &w[ 1], &w1[1], &vl[vl_offset], ldvl, &vr[vr_offset], ldvr, &lre[lre_offset], ldlre, &rcondv[1], & rcndv1[1], &rcdvin[1], &rconde[1], &rcnde1[1], & rcdein[1], &scale[1], &scale1[1], &result[1], & work[1], &nnwork, &rwork[1], info); /* Check for RESULT(j) > THRESH */ ntest = 0; nfail = 0; for (j = 1; j <= 9; ++j) { if (result[j] >= 0.f) { ++ntest; } if (result[j] >= *thresh) { ++nfail; } /* L100: */ } if (nfail > 0) { ++ntestf; } if (ntestf == 1) { io___39.ciunit = *nounit; s_wsfe(&io___39); do_fio(&c__1, path, (ftnlen)3); e_wsfe(); io___40.ciunit = *nounit; s_wsfe(&io___40); e_wsfe(); io___41.ciunit = *nounit; s_wsfe(&io___41); e_wsfe(); io___42.ciunit = *nounit; s_wsfe(&io___42); e_wsfe(); io___43.ciunit = *nounit; s_wsfe(&io___43); do_fio(&c__1, (char *)&(*thresh), (ftnlen)sizeof(real) ); e_wsfe(); ntestf = 2; } for (j = 1; j <= 9; ++j) { if (result[j] >= *thresh) { io___44.ciunit = *nounit; s_wsfe(&io___44); do_fio(&c__1, balanc, (ftnlen)1); do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)) ; do_fio(&c__1, (char *)&iwk, (ftnlen)sizeof( integer)); do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&j, (ftnlen)sizeof(integer)) ; do_fio(&c__1, (char *)&result[j], (ftnlen)sizeof( real)); e_wsfe(); } /* L110: */ } nerrs += nfail; ntestt += ntest; /* L120: */ } /* L130: */ } L140: ; } /* L150: */ } L160: /* Read in data from file to check accuracy of condition estimation. Assume input eigenvalues are sorted lexicographically (increasing by real part, then decreasing by imaginary part) */ jtype = 0; L170: io___45.ciunit = *niunit; i__1 = s_rsle(&io___45); if (i__1 != 0) { goto L220; } i__1 = do_lio(&c__3, &c__1, (char *)&n, (ftnlen)sizeof(integer)); if (i__1 != 0) { goto L220; } i__1 = do_lio(&c__3, &c__1, (char *)&isrt, (ftnlen)sizeof(integer)); if (i__1 != 0) { goto L220; } i__1 = e_rsle(); if (i__1 != 0) { goto L220; } /* Read input data until N=0 */ if (n == 0) { goto L220; } ++jtype; iseed[1] = jtype; i__1 = n; for (i__ = 1; i__ <= i__1; ++i__) { io___48.ciunit = *niunit; s_rsle(&io___48); i__2 = n; for (j = 1; j <= i__2; ++j) { do_lio(&c__6, &c__1, (char *)&a_ref(i__, j), (ftnlen)sizeof( complex)); } e_rsle(); /* L180: */ } i__1 = n; for (i__ = 1; i__ <= i__1; ++i__) { io___49.ciunit = *niunit; s_rsle(&io___49); do_lio(&c__4, &c__1, (char *)&wr, (ftnlen)sizeof(real)); do_lio(&c__4, &c__1, (char *)&wi, (ftnlen)sizeof(real)); do_lio(&c__4, &c__1, (char *)&rcdein[i__], (ftnlen)sizeof(real)); do_lio(&c__4, &c__1, (char *)&rcdvin[i__], (ftnlen)sizeof(real)); e_rsle(); i__2 = i__; q__1.r = wr, q__1.i = wi; w1[i__2].r = q__1.r, w1[i__2].i = q__1.i; /* L190: */ } /* Computing 2nd power */ i__2 = n; i__1 = n * 6 + (i__2 * i__2 << 1); cget23_(&c_true, &isrt, "N", &c__22, thresh, &iseed[1], nounit, &n, &a[ a_offset], lda, &h__[h_offset], &w[1], &w1[1], &vl[vl_offset], ldvl, &vr[vr_offset], ldvr, &lre[lre_offset], ldlre, &rcondv[1], & rcndv1[1], &rcdvin[1], &rconde[1], &rcnde1[1], &rcdein[1], &scale[ 1], &scale1[1], &result[1], &work[1], &i__1, &rwork[1], info); /* Check for RESULT(j) > THRESH */ ntest = 0; nfail = 0; for (j = 1; j <= 11; ++j) { if (result[j] >= 0.f) { ++ntest; } if (result[j] >= *thresh) { ++nfail; } /* L200: */ } if (nfail > 0) { ++ntestf; } if (ntestf == 1) { io___52.ciunit = *nounit; s_wsfe(&io___52); do_fio(&c__1, path, (ftnlen)3); e_wsfe(); io___53.ciunit = *nounit; s_wsfe(&io___53); e_wsfe(); io___54.ciunit = *nounit; s_wsfe(&io___54); e_wsfe(); io___55.ciunit = *nounit; s_wsfe(&io___55); e_wsfe(); io___56.ciunit = *nounit; s_wsfe(&io___56); do_fio(&c__1, (char *)&(*thresh), (ftnlen)sizeof(real)); e_wsfe(); ntestf = 2; } for (j = 1; j <= 11; ++j) { if (result[j] >= *thresh) { io___57.ciunit = *nounit; s_wsfe(&io___57); do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&j, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&result[j], (ftnlen)sizeof(real)); e_wsfe(); } /* L210: */ } nerrs += nfail; ntestt += ntest; goto L170; L220: /* Summary */ slasum_(path, nounit, &nerrs, &ntestt); return 0; /* End of CDRVVX */ } /* cdrvvx_ */ #undef a_ref #undef a_subscr