#include "blaswrap.h"
#include "f2c.h"

/* Subroutine */ int strexc_(char *compq, integer *n, real *t, integer *ldt, 
	real *q, integer *ldq, integer *ifst, integer *ilst, real *work, 
	integer *info)
{
/*  -- LAPACK routine (version 3.0) --   
       Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,   
       Courant Institute, Argonne National Lab, and Rice University   
       March 31, 1993   


    Purpose   
    =======   

    STREXC reorders the real Schur factorization of a real matrix   
    A = Q*T*Q**T, so that the diagonal block of T with row index IFST is   
    moved to row ILST.   

    The real Schur form T is reordered by an orthogonal similarity   
    transformation Z**T*T*Z, and optionally the matrix Q of Schur vectors   
    is updated by postmultiplying it with Z.   

    T must be in Schur canonical form (as returned by SHSEQR), that is,   
    block upper triangular with 1-by-1 and 2-by-2 diagonal blocks; each   
    2-by-2 diagonal block has its diagonal elements equal and its   
    off-diagonal elements of opposite sign.   

    Arguments   
    =========   

    COMPQ   (input) CHARACTER*1   
            = 'V':  update the matrix Q of Schur vectors;   
            = 'N':  do not update Q.   

    N       (input) INTEGER   
            The order of the matrix T. N >= 0.   

    T       (input/output) REAL array, dimension (LDT,N)   
            On entry, the upper quasi-triangular matrix T, in Schur   
            Schur canonical form.   
            On exit, the reordered upper quasi-triangular matrix, again   
            in Schur canonical form.   

    LDT     (input) INTEGER   
            The leading dimension of the array T. LDT >= max(1,N).   

    Q       (input/output) REAL array, dimension (LDQ,N)   
            On entry, if COMPQ = 'V', the matrix Q of Schur vectors.   
            On exit, if COMPQ = 'V', Q has been postmultiplied by the   
            orthogonal transformation matrix Z which reorders T.   
            If COMPQ = 'N', Q is not referenced.   

    LDQ     (input) INTEGER   
            The leading dimension of the array Q.  LDQ >= max(1,N).   

    IFST    (input/output) INTEGER   
    ILST    (input/output) INTEGER   
            Specify the reordering of the diagonal blocks of T.   
            The block with row index IFST is moved to row ILST, by a   
            sequence of transpositions between adjacent blocks.   
            On exit, if IFST pointed on entry to the second row of a   
            2-by-2 block, it is changed to point to the first row; ILST   
            always points to the first row of the block in its final   
            position (which may differ from its input value by +1 or -1).   
            1 <= IFST <= N; 1 <= ILST <= N.   

    WORK    (workspace) REAL array, dimension (N)   

    INFO    (output) INTEGER   
            = 0:  successful exit   
            < 0:  if INFO = -i, the i-th argument had an illegal value   
            = 1:  two adjacent blocks were too close to swap (the problem   
                  is very ill-conditioned); T may have been partially   
                  reordered, and ILST points to the first row of the   
                  current position of the block being moved.   

    =====================================================================   


       Decode and test the input arguments.   

       Parameter adjustments */
    /* Table of constant values */
    static integer c__1 = 1;
    static integer c__2 = 2;
    
    /* System generated locals */
    integer q_dim1, q_offset, t_dim1, t_offset, i__1;
    /* Local variables */
    static integer here;
    extern logical lsame_(char *, char *);
    static logical wantq;
    extern /* Subroutine */ int xerbla_(char *, integer *), slaexc_(
	    logical *, integer *, real *, integer *, real *, integer *, 
	    integer *, integer *, integer *, real *, integer *);
    static integer nbnext, nbf, nbl;
#define t_ref(a_1,a_2) t[(a_2)*t_dim1 + a_1]


    t_dim1 = *ldt;
    t_offset = 1 + t_dim1 * 1;
    t -= t_offset;
    q_dim1 = *ldq;
    q_offset = 1 + q_dim1 * 1;
    q -= q_offset;
    --work;

    /* Function Body */
    *info = 0;
    wantq = lsame_(compq, "V");
    if (! wantq && ! lsame_(compq, "N")) {
	*info = -1;
    } else if (*n < 0) {
	*info = -2;
    } else if (*ldt < max(1,*n)) {
	*info = -4;
    } else if (*ldq < 1 || wantq && *ldq < max(1,*n)) {
	*info = -6;
    } else if (*ifst < 1 || *ifst > *n) {
	*info = -7;
    } else if (*ilst < 1 || *ilst > *n) {
	*info = -8;
    }
    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("STREXC", &i__1);
	return 0;
    }

/*     Quick return if possible */

    if (*n <= 1) {
	return 0;
    }

/*     Determine the first row of specified block   
       and find out it is 1 by 1 or 2 by 2. */

    if (*ifst > 1) {
	if (t_ref(*ifst, *ifst - 1) != 0.f) {
	    --(*ifst);
	}
    }
    nbf = 1;
    if (*ifst < *n) {
	if (t_ref(*ifst + 1, *ifst) != 0.f) {
	    nbf = 2;
	}
    }

/*     Determine the first row of the final block   
       and find out it is 1 by 1 or 2 by 2. */

    if (*ilst > 1) {
	if (t_ref(*ilst, *ilst - 1) != 0.f) {
	    --(*ilst);
	}
    }
    nbl = 1;
    if (*ilst < *n) {
	if (t_ref(*ilst + 1, *ilst) != 0.f) {
	    nbl = 2;
	}
    }

    if (*ifst == *ilst) {
	return 0;
    }

    if (*ifst < *ilst) {

/*        Update ILST */

	if (nbf == 2 && nbl == 1) {
	    --(*ilst);
	}
	if (nbf == 1 && nbl == 2) {
	    ++(*ilst);
	}

	here = *ifst;

L10:

/*        Swap block with next one below */

	if (nbf == 1 || nbf == 2) {

/*           Current block either 1 by 1 or 2 by 2 */

	    nbnext = 1;
	    if (here + nbf + 1 <= *n) {
		if (t_ref(here + nbf + 1, here + nbf) != 0.f) {
		    nbnext = 2;
		}
	    }
	    slaexc_(&wantq, n, &t[t_offset], ldt, &q[q_offset], ldq, &here, &
		    nbf, &nbnext, &work[1], info);
	    if (*info != 0) {
		*ilst = here;
		return 0;
	    }
	    here += nbnext;

/*           Test if 2 by 2 block breaks into two 1 by 1 blocks */

	    if (nbf == 2) {
		if (t_ref(here + 1, here) == 0.f) {
		    nbf = 3;
		}
	    }

	} else {

/*           Current block consists of two 1 by 1 blocks each of which   
             must be swapped individually */

	    nbnext = 1;
	    if (here + 3 <= *n) {
		if (t_ref(here + 3, here + 2) != 0.f) {
		    nbnext = 2;
		}
	    }
	    i__1 = here + 1;
	    slaexc_(&wantq, n, &t[t_offset], ldt, &q[q_offset], ldq, &i__1, &
		    c__1, &nbnext, &work[1], info);
	    if (*info != 0) {
		*ilst = here;
		return 0;
	    }
	    if (nbnext == 1) {

/*              Swap two 1 by 1 blocks, no problems possible */

		slaexc_(&wantq, n, &t[t_offset], ldt, &q[q_offset], ldq, &
			here, &c__1, &nbnext, &work[1], info);
		++here;
	    } else {

/*              Recompute NBNEXT in case 2 by 2 split */

		if (t_ref(here + 2, here + 1) == 0.f) {
		    nbnext = 1;
		}
		if (nbnext == 2) {

/*                 2 by 2 Block did not split */

		    slaexc_(&wantq, n, &t[t_offset], ldt, &q[q_offset], ldq, &
			    here, &c__1, &nbnext, &work[1], info);
		    if (*info != 0) {
			*ilst = here;
			return 0;
		    }
		    here += 2;
		} else {

/*                 2 by 2 Block did split */

		    slaexc_(&wantq, n, &t[t_offset], ldt, &q[q_offset], ldq, &
			    here, &c__1, &c__1, &work[1], info);
		    i__1 = here + 1;
		    slaexc_(&wantq, n, &t[t_offset], ldt, &q[q_offset], ldq, &
			    i__1, &c__1, &c__1, &work[1], info);
		    here += 2;
		}
	    }
	}
	if (here < *ilst) {
	    goto L10;
	}

    } else {

	here = *ifst;
L20:

/*        Swap block with next one above */

	if (nbf == 1 || nbf == 2) {

/*           Current block either 1 by 1 or 2 by 2 */

	    nbnext = 1;
	    if (here >= 3) {
		if (t_ref(here - 1, here - 2) != 0.f) {
		    nbnext = 2;
		}
	    }
	    i__1 = here - nbnext;
	    slaexc_(&wantq, n, &t[t_offset], ldt, &q[q_offset], ldq, &i__1, &
		    nbnext, &nbf, &work[1], info);
	    if (*info != 0) {
		*ilst = here;
		return 0;
	    }
	    here -= nbnext;

/*           Test if 2 by 2 block breaks into two 1 by 1 blocks */

	    if (nbf == 2) {
		if (t_ref(here + 1, here) == 0.f) {
		    nbf = 3;
		}
	    }

	} else {

/*           Current block consists of two 1 by 1 blocks each of which   
             must be swapped individually */

	    nbnext = 1;
	    if (here >= 3) {
		if (t_ref(here - 1, here - 2) != 0.f) {
		    nbnext = 2;
		}
	    }
	    i__1 = here - nbnext;
	    slaexc_(&wantq, n, &t[t_offset], ldt, &q[q_offset], ldq, &i__1, &
		    nbnext, &c__1, &work[1], info);
	    if (*info != 0) {
		*ilst = here;
		return 0;
	    }
	    if (nbnext == 1) {

/*              Swap two 1 by 1 blocks, no problems possible */

		slaexc_(&wantq, n, &t[t_offset], ldt, &q[q_offset], ldq, &
			here, &nbnext, &c__1, &work[1], info);
		--here;
	    } else {

/*              Recompute NBNEXT in case 2 by 2 split */

		if (t_ref(here, here - 1) == 0.f) {
		    nbnext = 1;
		}
		if (nbnext == 2) {

/*                 2 by 2 Block did not split */

		    i__1 = here - 1;
		    slaexc_(&wantq, n, &t[t_offset], ldt, &q[q_offset], ldq, &
			    i__1, &c__2, &c__1, &work[1], info);
		    if (*info != 0) {
			*ilst = here;
			return 0;
		    }
		    here += -2;
		} else {

/*                 2 by 2 Block did split */

		    slaexc_(&wantq, n, &t[t_offset], ldt, &q[q_offset], ldq, &
			    here, &c__1, &c__1, &work[1], info);
		    i__1 = here - 1;
		    slaexc_(&wantq, n, &t[t_offset], ldt, &q[q_offset], ldq, &
			    i__1, &c__1, &c__1, &work[1], info);
		    here += -2;
		}
	    }
	}
	if (here > *ilst) {
	    goto L20;
	}
    }
    *ilst = here;

    return 0;

/*     End of STREXC */

} /* strexc_ */

#undef t_ref