#include "blaswrap.h" #include "f2c.h" /* Subroutine */ int dspevd_(char *jobz, char *uplo, integer *n, doublereal * ap, doublereal *w, doublereal *z__, integer *ldz, doublereal *work, integer *lwork, integer *iwork, integer *liwork, integer *info) { /* -- LAPACK driver routine (version 3.0) -- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., Courant Institute, Argonne National Lab, and Rice University June 30, 1999 Purpose ======= DSPEVD computes all the eigenvalues and, optionally, eigenvectors of a real symmetric matrix A in packed storage. If eigenvectors are desired, it uses a divide and conquer algorithm. The divide and conquer algorithm makes very mild assumptions about floating point arithmetic. It will work on machines with a guard digit in add/subtract, or on those binary machines without guard digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or Cray-2. It could conceivably fail on hexadecimal or decimal machines without guard digits, but we know of none. Arguments ========= JOBZ (input) CHARACTER*1 = 'N': Compute eigenvalues only; = 'V': Compute eigenvalues and eigenvectors. UPLO (input) CHARACTER*1 = 'U': Upper triangle of A is stored; = 'L': Lower triangle of A is stored. N (input) INTEGER The order of the matrix A. N >= 0. AP (input/output) DOUBLE PRECISION array, dimension (N*(N+1)/2) On entry, the upper or lower triangle of the symmetric matrix A, packed columnwise in a linear array. The j-th column of A is stored in the array AP as follows: if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n. On exit, AP is overwritten by values generated during the reduction to tridiagonal form. If UPLO = 'U', the diagonal and first superdiagonal of the tridiagonal matrix T overwrite the corresponding elements of A, and if UPLO = 'L', the diagonal and first subdiagonal of T overwrite the corresponding elements of A. W (output) DOUBLE PRECISION array, dimension (N) If INFO = 0, the eigenvalues in ascending order. Z (output) DOUBLE PRECISION array, dimension (LDZ, N) If JOBZ = 'V', then if INFO = 0, Z contains the orthonormal eigenvectors of the matrix A, with the i-th column of Z holding the eigenvector associated with W(i). If JOBZ = 'N', then Z is not referenced. LDZ (input) INTEGER The leading dimension of the array Z. LDZ >= 1, and if JOBZ = 'V', LDZ >= max(1,N). WORK (workspace/output) DOUBLE PRECISION array, dimension (LWORK) On exit, if INFO = 0, WORK(1) returns the optimal LWORK. LWORK (input) INTEGER The dimension of the array WORK. If N <= 1, LWORK must be at least 1. If JOBZ = 'N' and N > 1, LWORK must be at least 2*N. If JOBZ = 'V' and N > 1, LWORK must be at least 1 + 6*N + N**2. If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA. IWORK (workspace/output) INTEGER array, dimension (LIWORK) On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK. LIWORK (input) INTEGER The dimension of the array IWORK. If JOBZ = 'N' or N <= 1, LIWORK must be at least 1. If JOBZ = 'V' and N > 1, LIWORK must be at least 3 + 5*N. If LIWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the IWORK array, returns this value as the first entry of the IWORK array, and no error message related to LIWORK is issued by XERBLA. INFO (output) INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value. > 0: if INFO = i, the algorithm failed to converge; i off-diagonal elements of an intermediate tridiagonal form did not converge to zero. ===================================================================== Test the input parameters. Parameter adjustments */ /* Table of constant values */ static integer c__1 = 1; /* System generated locals */ integer z_dim1, z_offset, i__1; doublereal d__1; /* Builtin functions */ double sqrt(doublereal); /* Local variables */ static integer inde; static doublereal anrm, rmin, rmax; extern /* Subroutine */ int dscal_(integer *, doublereal *, doublereal *, integer *); static doublereal sigma; extern logical lsame_(char *, char *); static integer iinfo, lwmin; static logical wantz; extern doublereal dlamch_(char *); static integer iscale; extern /* Subroutine */ int dstedc_(char *, integer *, doublereal *, doublereal *, doublereal *, integer *, doublereal *, integer *, integer *, integer *, integer *); static doublereal safmin; extern /* Subroutine */ int xerbla_(char *, integer *); static doublereal bignum; extern doublereal dlansp_(char *, char *, integer *, doublereal *, doublereal *); static integer indtau; extern /* Subroutine */ int dsterf_(integer *, doublereal *, doublereal *, integer *); static integer indwrk, liwmin; extern /* Subroutine */ int dsptrd_(char *, integer *, doublereal *, doublereal *, doublereal *, doublereal *, integer *), dopmtr_(char *, char *, char *, integer *, integer *, doublereal * , doublereal *, doublereal *, integer *, doublereal *, integer *); static integer llwork; static doublereal smlnum; static logical lquery; static doublereal eps; #define z___ref(a_1,a_2) z__[(a_2)*z_dim1 + a_1] --ap; --w; z_dim1 = *ldz; z_offset = 1 + z_dim1 * 1; z__ -= z_offset; --work; --iwork; /* Function Body */ wantz = lsame_(jobz, "V"); lquery = *lwork == -1 || *liwork == -1; *info = 0; if (*n <= 1) { liwmin = 1; lwmin = 1; } else { if (wantz) { liwmin = *n * 5 + 3; /* Computing 2nd power */ i__1 = *n; lwmin = *n * 6 + 1 + i__1 * i__1; } else { liwmin = 1; lwmin = *n << 1; } } if (! (wantz || lsame_(jobz, "N"))) { *info = -1; } else if (! (lsame_(uplo, "U") || lsame_(uplo, "L"))) { *info = -2; } else if (*n < 0) { *info = -3; } else if (*ldz < 1 || wantz && *ldz < *n) { *info = -7; } else if (*lwork < lwmin && ! lquery) { *info = -9; } else if (*liwork < liwmin && ! lquery) { *info = -11; } if (*info == 0) { work[1] = (doublereal) lwmin; iwork[1] = liwmin; } if (*info != 0) { i__1 = -(*info); xerbla_("DSPEVD", &i__1); return 0; } else if (lquery) { return 0; } /* Quick return if possible */ if (*n == 0) { return 0; } if (*n == 1) { w[1] = ap[1]; if (wantz) { z___ref(1, 1) = 1.; } return 0; } /* Get machine constants. */ safmin = dlamch_("Safe minimum"); eps = dlamch_("Precision"); smlnum = safmin / eps; bignum = 1. / smlnum; rmin = sqrt(smlnum); rmax = sqrt(bignum); /* Scale matrix to allowable range, if necessary. */ anrm = dlansp_("M", uplo, n, &ap[1], &work[1]); iscale = 0; if (anrm > 0. && anrm < rmin) { iscale = 1; sigma = rmin / anrm; } else if (anrm > rmax) { iscale = 1; sigma = rmax / anrm; } if (iscale == 1) { i__1 = *n * (*n + 1) / 2; dscal_(&i__1, &sigma, &ap[1], &c__1); } /* Call DSPTRD to reduce symmetric packed matrix to tridiagonal form. */ inde = 1; indtau = inde + *n; dsptrd_(uplo, n, &ap[1], &w[1], &work[inde], &work[indtau], &iinfo); /* For eigenvalues only, call DSTERF. For eigenvectors, first call DSTEDC to generate the eigenvector matrix, WORK(INDWRK), of the tridiagonal matrix, then call DOPMTR to multiply it by the Householder transformations represented in AP. */ if (! wantz) { dsterf_(n, &w[1], &work[inde], info); } else { indwrk = indtau + *n; llwork = *lwork - indwrk + 1; dstedc_("I", n, &w[1], &work[inde], &z__[z_offset], ldz, &work[indwrk] , &llwork, &iwork[1], liwork, info); dopmtr_("L", uplo, "N", n, n, &ap[1], &work[indtau], &z__[z_offset], ldz, &work[indwrk], &iinfo); } /* If matrix was scaled, then rescale eigenvalues appropriately. */ if (iscale == 1) { d__1 = 1. / sigma; dscal_(n, &d__1, &w[1], &c__1); } work[1] = (doublereal) lwmin; iwork[1] = liwmin; return 0; /* End of DSPEVD */ } /* dspevd_ */ #undef z___ref