#include "blaswrap.h"
#include "f2c.h"

/* Subroutine */ int ctptri_(char *uplo, char *diag, integer *n, complex *ap, 
	integer *info)
{
/*  -- LAPACK routine (version 3.0) --   
       Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,   
       Courant Institute, Argonne National Lab, and Rice University   
       September 30, 1994   


    Purpose   
    =======   

    CTPTRI computes the inverse of a complex upper or lower triangular   
    matrix A stored in packed format.   

    Arguments   
    =========   

    UPLO    (input) CHARACTER*1   
            = 'U':  A is upper triangular;   
            = 'L':  A is lower triangular.   

    DIAG    (input) CHARACTER*1   
            = 'N':  A is non-unit triangular;   
            = 'U':  A is unit triangular.   

    N       (input) INTEGER   
            The order of the matrix A.  N >= 0.   

    AP      (input/output) COMPLEX array, dimension (N*(N+1)/2)   
            On entry, the upper or lower triangular matrix A, stored   
            columnwise in a linear array.  The j-th column of A is stored   
            in the array AP as follows:   
            if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;   
            if UPLO = 'L', AP(i + (j-1)*((2*n-j)/2) = A(i,j) for j<=i<=n.   
            See below for further details.   
            On exit, the (triangular) inverse of the original matrix, in   
            the same packed storage format.   

    INFO    (output) INTEGER   
            = 0:  successful exit   
            < 0:  if INFO = -i, the i-th argument had an illegal value   
            > 0:  if INFO = i, A(i,i) is exactly zero.  The triangular   
                  matrix is singular and its inverse can not be computed.   

    Further Details   
    ===============   

    A triangular matrix A can be transferred to packed storage using one   
    of the following program segments:   

    UPLO = 'U':                      UPLO = 'L':   

          JC = 1                           JC = 1   
          DO 2 J = 1, N                    DO 2 J = 1, N   
             DO 1 I = 1, J                    DO 1 I = J, N   
                AP(JC+I-1) = A(I,J)              AP(JC+I-J) = A(I,J)   
        1    CONTINUE                    1    CONTINUE   
             JC = JC + J                      JC = JC + N - J + 1   
        2 CONTINUE                       2 CONTINUE   

    =====================================================================   


       Test the input parameters.   

       Parameter adjustments */
    /* Table of constant values */
    static complex c_b1 = {1.f,0.f};
    static integer c__1 = 1;
    
    /* System generated locals */
    integer i__1, i__2;
    complex q__1;
    /* Builtin functions */
    void c_div(complex *, complex *, complex *);
    /* Local variables */
    static integer j;
    extern /* Subroutine */ int cscal_(integer *, complex *, complex *, 
	    integer *);
    extern logical lsame_(char *, char *);
    extern /* Subroutine */ int ctpmv_(char *, char *, char *, integer *, 
	    complex *, complex *, integer *);
    static logical upper;
    static integer jc, jj;
    extern /* Subroutine */ int xerbla_(char *, integer *);
    static integer jclast;
    static logical nounit;
    static complex ajj;


    --ap;

    /* Function Body */
    *info = 0;
    upper = lsame_(uplo, "U");
    nounit = lsame_(diag, "N");
    if (! upper && ! lsame_(uplo, "L")) {
	*info = -1;
    } else if (! nounit && ! lsame_(diag, "U")) {
	*info = -2;
    } else if (*n < 0) {
	*info = -3;
    }
    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("CTPTRI", &i__1);
	return 0;
    }

/*     Check for singularity if non-unit. */

    if (nounit) {
	if (upper) {
	    jj = 0;
	    i__1 = *n;
	    for (*info = 1; *info <= i__1; ++(*info)) {
		jj += *info;
		i__2 = jj;
		if (ap[i__2].r == 0.f && ap[i__2].i == 0.f) {
		    return 0;
		}
/* L10: */
	    }
	} else {
	    jj = 1;
	    i__1 = *n;
	    for (*info = 1; *info <= i__1; ++(*info)) {
		i__2 = jj;
		if (ap[i__2].r == 0.f && ap[i__2].i == 0.f) {
		    return 0;
		}
		jj = jj + *n - *info + 1;
/* L20: */
	    }
	}
	*info = 0;
    }

    if (upper) {

/*        Compute inverse of upper triangular matrix. */

	jc = 1;
	i__1 = *n;
	for (j = 1; j <= i__1; ++j) {
	    if (nounit) {
		i__2 = jc + j - 1;
		c_div(&q__1, &c_b1, &ap[jc + j - 1]);
		ap[i__2].r = q__1.r, ap[i__2].i = q__1.i;
		i__2 = jc + j - 1;
		q__1.r = -ap[i__2].r, q__1.i = -ap[i__2].i;
		ajj.r = q__1.r, ajj.i = q__1.i;
	    } else {
		q__1.r = -1.f, q__1.i = 0.f;
		ajj.r = q__1.r, ajj.i = q__1.i;
	    }

/*           Compute elements 1:j-1 of j-th column. */

	    i__2 = j - 1;
	    ctpmv_("Upper", "No transpose", diag, &i__2, &ap[1], &ap[jc], &
		    c__1);
	    i__2 = j - 1;
	    cscal_(&i__2, &ajj, &ap[jc], &c__1);
	    jc += j;
/* L30: */
	}

    } else {

/*        Compute inverse of lower triangular matrix. */

	jc = *n * (*n + 1) / 2;
	for (j = *n; j >= 1; --j) {
	    if (nounit) {
		i__1 = jc;
		c_div(&q__1, &c_b1, &ap[jc]);
		ap[i__1].r = q__1.r, ap[i__1].i = q__1.i;
		i__1 = jc;
		q__1.r = -ap[i__1].r, q__1.i = -ap[i__1].i;
		ajj.r = q__1.r, ajj.i = q__1.i;
	    } else {
		q__1.r = -1.f, q__1.i = 0.f;
		ajj.r = q__1.r, ajj.i = q__1.i;
	    }
	    if (j < *n) {

/*              Compute elements j+1:n of j-th column. */

		i__1 = *n - j;
		ctpmv_("Lower", "No transpose", diag, &i__1, &ap[jclast], &ap[
			jc + 1], &c__1);
		i__1 = *n - j;
		cscal_(&i__1, &ajj, &ap[jc + 1], &c__1);
	    }
	    jclast = jc;
	    jc = jc - *n + j - 2;
/* L40: */
	}
    }

    return 0;

/*     End of CTPTRI */

} /* ctptri_ */