/* zqrt15.f -- translated by f2c (version 20061008). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #include "f2c.h" #include "blaswrap.h" /* Table of constant values */ static doublecomplex c_b1 = {0.,0.}; static doublecomplex c_b2 = {1.,0.}; static integer c__16 = 16; static integer c__2 = 2; static integer c__1 = 1; static doublecomplex c_b22 = {2.,0.}; static integer c__0 = 0; /* Subroutine */ int zqrt15_(integer *scale, integer *rksel, integer *m, integer *n, integer *nrhs, doublecomplex *a, integer *lda, doublecomplex *b, integer *ldb, doublereal *s, integer *rank, doublereal *norma, doublereal *normb, integer *iseed, doublecomplex * work, integer *lwork) { /* System generated locals */ integer a_dim1, a_offset, b_dim1, b_offset, i__1, i__2; doublereal d__1; /* Local variables */ integer j, mn; doublereal eps; integer info; doublereal temp; extern doublereal dasum_(integer *, doublereal *, integer *); extern /* Subroutine */ int zlarf_(char *, integer *, integer *, doublecomplex *, integer *, doublecomplex *, doublecomplex *, integer *, doublecomplex *), zgemm_(char *, char *, integer *, integer *, integer *, doublecomplex *, doublecomplex *, integer *, doublecomplex *, integer *, doublecomplex *, doublecomplex *, integer *); doublereal dummy[1]; extern /* Subroutine */ int dlabad_(doublereal *, doublereal *); extern doublereal dznrm2_(integer *, doublecomplex *, integer *), dlamch_( char *); extern /* Subroutine */ int dlascl_(char *, integer *, integer *, doublereal *, doublereal *, integer *, integer *, doublereal *, integer *, integer *); extern doublereal dlarnd_(integer *, integer *); extern /* Subroutine */ int dlaord_(char *, integer *, doublereal *, integer *), xerbla_(char *, integer *); extern doublereal zlange_(char *, integer *, integer *, doublecomplex *, integer *, doublereal *); doublereal bignum; extern /* Subroutine */ int zdscal_(integer *, doublereal *, doublecomplex *, integer *), zlascl_(char *, integer *, integer *, doublereal *, doublereal *, integer *, integer *, doublecomplex * , integer *, integer *), zlaset_(char *, integer *, integer *, doublecomplex *, doublecomplex *, doublecomplex *, integer *), zlaror_(char *, char *, integer *, integer *, doublecomplex *, integer *, integer *, doublecomplex *, integer *); doublereal smlnum; extern /* Subroutine */ int zlarnv_(integer *, integer *, integer *, doublecomplex *); /* -- LAPACK test routine (version 3.1) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* ZQRT15 generates a matrix with full or deficient rank and of various */ /* norms. */ /* Arguments */ /* ========= */ /* SCALE (input) INTEGER */ /* SCALE = 1: normally scaled matrix */ /* SCALE = 2: matrix scaled up */ /* SCALE = 3: matrix scaled down */ /* RKSEL (input) INTEGER */ /* RKSEL = 1: full rank matrix */ /* RKSEL = 2: rank-deficient matrix */ /* M (input) INTEGER */ /* The number of rows of the matrix A. */ /* N (input) INTEGER */ /* The number of columns of A. */ /* NRHS (input) INTEGER */ /* The number of columns of B. */ /* A (output) COMPLEX*16 array, dimension (LDA,N) */ /* The M-by-N matrix A. */ /* LDA (input) INTEGER */ /* The leading dimension of the array A. */ /* B (output) COMPLEX*16 array, dimension (LDB, NRHS) */ /* A matrix that is in the range space of matrix A. */ /* LDB (input) INTEGER */ /* The leading dimension of the array B. */ /* S (output) DOUBLE PRECISION array, dimension MIN(M,N) */ /* Singular values of A. */ /* RANK (output) INTEGER */ /* number of nonzero singular values of A. */ /* NORMA (output) DOUBLE PRECISION */ /* one-norm norm of A. */ /* NORMB (output) DOUBLE PRECISION */ /* one-norm norm of B. */ /* ISEED (input/output) integer array, dimension (4) */ /* seed for random number generator. */ /* WORK (workspace) COMPLEX*16 array, dimension (LWORK) */ /* LWORK (input) INTEGER */ /* length of work space required. */ /* LWORK >= MAX(M+MIN(M,N),NRHS*MIN(M,N),2*N+M) */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. Local Arrays .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; b_dim1 = *ldb; b_offset = 1 + b_dim1; b -= b_offset; --s; --iseed; --work; /* Function Body */ mn = min(*m,*n); /* Computing MAX */ i__1 = *m + mn, i__2 = mn * *nrhs, i__1 = max(i__1,i__2), i__2 = (*n << 1) + *m; if (*lwork < max(i__1,i__2)) { xerbla_("ZQRT15", &c__16); return 0; } smlnum = dlamch_("Safe minimum"); bignum = 1. / smlnum; dlabad_(&smlnum, &bignum); eps = dlamch_("Epsilon"); smlnum = smlnum / eps / eps; bignum = 1. / smlnum; /* Determine rank and (unscaled) singular values */ if (*rksel == 1) { *rank = mn; } else if (*rksel == 2) { *rank = mn * 3 / 4; i__1 = mn; for (j = *rank + 1; j <= i__1; ++j) { s[j] = 0.; /* L10: */ } } else { xerbla_("ZQRT15", &c__2); } if (*rank > 0) { /* Nontrivial case */ s[1] = 1.; i__1 = *rank; for (j = 2; j <= i__1; ++j) { L20: temp = dlarnd_(&c__1, &iseed[1]); if (temp > .1) { s[j] = abs(temp); } else { goto L20; } /* L30: */ } dlaord_("Decreasing", rank, &s[1], &c__1); /* Generate 'rank' columns of a random orthogonal matrix in A */ zlarnv_(&c__2, &iseed[1], m, &work[1]); d__1 = 1. / dznrm2_(m, &work[1], &c__1); zdscal_(m, &d__1, &work[1], &c__1); zlaset_("Full", m, rank, &c_b1, &c_b2, &a[a_offset], lda); zlarf_("Left", m, rank, &work[1], &c__1, &c_b22, &a[a_offset], lda, & work[*m + 1]); /* workspace used: m+mn */ /* Generate consistent rhs in the range space of A */ i__1 = *rank * *nrhs; zlarnv_(&c__2, &iseed[1], &i__1, &work[1]); zgemm_("No transpose", "No transpose", m, nrhs, rank, &c_b2, &a[ a_offset], lda, &work[1], rank, &c_b1, &b[b_offset], ldb); /* work space used: <= mn *nrhs */ /* generate (unscaled) matrix A */ i__1 = *rank; for (j = 1; j <= i__1; ++j) { zdscal_(m, &s[j], &a[j * a_dim1 + 1], &c__1); /* L40: */ } if (*rank < *n) { i__1 = *n - *rank; zlaset_("Full", m, &i__1, &c_b1, &c_b1, &a[(*rank + 1) * a_dim1 + 1], lda); } zlaror_("Right", "No initialization", m, n, &a[a_offset], lda, &iseed[ 1], &work[1], &info); } else { /* work space used 2*n+m */ /* Generate null matrix and rhs */ i__1 = mn; for (j = 1; j <= i__1; ++j) { s[j] = 0.; /* L50: */ } zlaset_("Full", m, n, &c_b1, &c_b1, &a[a_offset], lda); zlaset_("Full", m, nrhs, &c_b1, &c_b1, &b[b_offset], ldb); } /* Scale the matrix */ if (*scale != 1) { *norma = zlange_("Max", m, n, &a[a_offset], lda, dummy); if (*norma != 0.) { if (*scale == 2) { /* matrix scaled up */ zlascl_("General", &c__0, &c__0, norma, &bignum, m, n, &a[ a_offset], lda, &info); dlascl_("General", &c__0, &c__0, norma, &bignum, &mn, &c__1, & s[1], &mn, &info); zlascl_("General", &c__0, &c__0, norma, &bignum, m, nrhs, &b[ b_offset], ldb, &info); } else if (*scale == 3) { /* matrix scaled down */ zlascl_("General", &c__0, &c__0, norma, &smlnum, m, n, &a[ a_offset], lda, &info); dlascl_("General", &c__0, &c__0, norma, &smlnum, &mn, &c__1, & s[1], &mn, &info); zlascl_("General", &c__0, &c__0, norma, &smlnum, m, nrhs, &b[ b_offset], ldb, &info); } else { xerbla_("ZQRT15", &c__1); return 0; } } } *norma = dasum_(&mn, &s[1], &c__1); *normb = zlange_("One-norm", m, nrhs, &b[b_offset], ldb, dummy) ; return 0; /* End of ZQRT15 */ } /* zqrt15_ */