/* zchkqr.f -- translated by f2c (version 20061008). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #include "f2c.h" #include "blaswrap.h" /* Common Block Declarations */ struct { integer infot, nunit; logical ok, lerr; } infoc_; #define infoc_1 infoc_ struct { char srnamt[32]; } srnamc_; #define srnamc_1 srnamc_ /* Table of constant values */ static integer c__2 = 2; static integer c__0 = 0; static integer c_n1 = -1; static integer c__1 = 1; static integer c__3 = 3; /* Subroutine */ int zchkqr_(logical *dotype, integer *nm, integer *mval, integer *nn, integer *nval, integer *nnb, integer *nbval, integer * nxval, integer *nrhs, doublereal *thresh, logical *tsterr, integer * nmax, doublecomplex *a, doublecomplex *af, doublecomplex *aq, doublecomplex *ar, doublecomplex *ac, doublecomplex *b, doublecomplex *x, doublecomplex *xact, doublecomplex *tau, doublecomplex *work, doublereal *rwork, integer *iwork, integer *nout) { /* Initialized data */ static integer iseedy[4] = { 1988,1989,1990,1991 }; /* Format strings */ static char fmt_9999[] = "(\002 M=\002,i5,\002, N=\002,i5,\002, K=\002,i" "5,\002, NB=\002,i4,\002, NX=\002,i5,\002, type \002,i2,\002, tes" "t(\002,i2,\002)=\002,g12.5)"; /* System generated locals */ integer i__1, i__2, i__3, i__4; /* Builtin functions */ /* Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen); integer s_wsfe(cilist *), do_fio(integer *, char *, ftnlen), e_wsfe(void); /* Local variables */ integer i__, k, m, n, nb, ik, im, in, kl, nk, ku, nt, nx, lda, inb, mode, imat, info; char path[3]; integer kval[4]; char dist[1], type__[1]; integer nrun; extern /* Subroutine */ int alahd_(integer *, char *); integer nfail, iseed[4]; extern /* Subroutine */ int zget02_(char *, integer *, integer *, integer *, doublecomplex *, integer *, doublecomplex *, integer *, doublecomplex *, integer *, doublereal *, doublereal *); doublereal anorm; integer minmn, nerrs, lwork; extern /* Subroutine */ int zqrt01_(integer *, integer *, doublecomplex *, doublecomplex *, doublecomplex *, doublecomplex *, integer *, doublecomplex *, doublecomplex *, integer *, doublereal *, doublereal *), zqrt02_(integer *, integer *, integer *, doublecomplex *, doublecomplex *, doublecomplex *, doublecomplex * , integer *, doublecomplex *, doublecomplex *, integer *, doublereal *, doublereal *), zqrt03_(integer *, integer *, integer *, doublecomplex *, doublecomplex *, doublecomplex *, doublecomplex *, integer *, doublecomplex *, doublecomplex *, integer *, doublereal *, doublereal *), zlatb4_(char *, integer *, integer *, integer *, char *, integer *, integer *, doublereal *, integer *, doublereal *, char *), alaerh_(char *, char *, integer *, integer *, char *, integer *, integer *, integer *, integer *, integer *, integer *, integer *, integer *, integer *), alasum_(char *, integer *, integer *, integer *, integer *); doublereal cndnum; extern logical zgennd_(integer *, integer *, doublecomplex *, integer *); extern /* Subroutine */ int xlaenv_(integer *, integer *), zlacpy_(char *, integer *, integer *, doublecomplex *, integer *, doublecomplex * , integer *), zlarhs_(char *, char *, char *, char *, integer *, integer *, integer *, integer *, integer *, doublecomplex *, integer *, doublecomplex *, integer *, doublecomplex *, integer *, integer *, integer *), zlatms_(integer *, integer *, char *, integer *, char *, doublereal *, integer *, doublereal *, doublereal *, integer *, integer *, char *, doublecomplex *, integer *, doublecomplex *, integer *), zgeqrs_( integer *, integer *, integer *, doublecomplex *, integer *, doublecomplex *, doublecomplex *, integer *, doublecomplex *, integer *, integer *); doublereal result[8]; extern /* Subroutine */ int zerrqr_(char *, integer *); /* Fortran I/O blocks */ static cilist io___33 = { 0, 0, 0, fmt_9999, 0 }; /* -- LAPACK test routine (version 3.1) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* ZCHKQR tests ZGEQRF, ZUNGQR and CUNMQR. */ /* Arguments */ /* ========= */ /* DOTYPE (input) LOGICAL array, dimension (NTYPES) */ /* The matrix types to be used for testing. Matrices of type j */ /* (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) = */ /* .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used. */ /* NM (input) INTEGER */ /* The number of values of M contained in the vector MVAL. */ /* MVAL (input) INTEGER array, dimension (NM) */ /* The values of the matrix row dimension M. */ /* NN (input) INTEGER */ /* The number of values of N contained in the vector NVAL. */ /* NVAL (input) INTEGER array, dimension (NN) */ /* The values of the matrix column dimension N. */ /* NNB (input) INTEGER */ /* The number of values of NB and NX contained in the */ /* vectors NBVAL and NXVAL. The blocking parameters are used */ /* in pairs (NB,NX). */ /* NBVAL (input) INTEGER array, dimension (NNB) */ /* The values of the blocksize NB. */ /* NXVAL (input) INTEGER array, dimension (NNB) */ /* The values of the crossover point NX. */ /* NRHS (input) INTEGER */ /* The number of right hand side vectors to be generated for */ /* each linear system. */ /* THRESH (input) DOUBLE PRECISION */ /* The threshold value for the test ratios. A result is */ /* included in the output file if RESULT >= THRESH. To have */ /* every test ratio printed, use THRESH = 0. */ /* TSTERR (input) LOGICAL */ /* Flag that indicates whether error exits are to be tested. */ /* NMAX (input) INTEGER */ /* The maximum value permitted for M or N, used in dimensioning */ /* the work arrays. */ /* A (workspace) COMPLEX*16 array, dimension (NMAX*NMAX) */ /* AF (workspace) COMPLEX*16 array, dimension (NMAX*NMAX) */ /* AQ (workspace) COMPLEX*16 array, dimension (NMAX*NMAX) */ /* AR (workspace) COMPLEX*16 array, dimension (NMAX*NMAX) */ /* AC (workspace) COMPLEX*16 array, dimension (NMAX*NMAX) */ /* B (workspace) COMPLEX*16 array, dimension (NMAX*NRHS) */ /* X (workspace) COMPLEX*16 array, dimension (NMAX*NRHS) */ /* XACT (workspace) COMPLEX*16 array, dimension (NMAX*NRHS) */ /* TAU (workspace) COMPLEX*16 array, dimension (NMAX) */ /* WORK (workspace) COMPLEX*16 array, dimension (NMAX*NMAX) */ /* RWORK (workspace) DOUBLE PRECISION array, dimension (NMAX) */ /* IWORK (workspace) INTEGER array, dimension (NMAX) */ /* NOUT (input) INTEGER */ /* The unit number for output. */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. Local Arrays .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Scalars in Common .. */ /* .. */ /* .. Common blocks .. */ /* .. */ /* .. Data statements .. */ /* Parameter adjustments */ --iwork; --rwork; --work; --tau; --xact; --x; --b; --ac; --ar; --aq; --af; --a; --nxval; --nbval; --nval; --mval; --dotype; /* Function Body */ /* .. */ /* .. Executable Statements .. */ /* Initialize constants and the random number seed. */ s_copy(path, "Zomplex precision", (ftnlen)1, (ftnlen)17); s_copy(path + 1, "QR", (ftnlen)2, (ftnlen)2); nrun = 0; nfail = 0; nerrs = 0; for (i__ = 1; i__ <= 4; ++i__) { iseed[i__ - 1] = iseedy[i__ - 1]; /* L10: */ } /* Test the error exits */ if (*tsterr) { zerrqr_(path, nout); } infoc_1.infot = 0; xlaenv_(&c__2, &c__2); lda = *nmax; lwork = *nmax * max(*nmax,*nrhs); /* Do for each value of M in MVAL. */ i__1 = *nm; for (im = 1; im <= i__1; ++im) { m = mval[im]; /* Do for each value of N in NVAL. */ i__2 = *nn; for (in = 1; in <= i__2; ++in) { n = nval[in]; minmn = min(m,n); for (imat = 1; imat <= 8; ++imat) { /* Do the tests only if DOTYPE( IMAT ) is true. */ if (! dotype[imat]) { goto L50; } /* Set up parameters with ZLATB4 and generate a test matrix */ /* with ZLATMS. */ zlatb4_(path, &imat, &m, &n, type__, &kl, &ku, &anorm, &mode, &cndnum, dist); s_copy(srnamc_1.srnamt, "ZLATMS", (ftnlen)32, (ftnlen)6); zlatms_(&m, &n, dist, iseed, type__, &rwork[1], &mode, & cndnum, &anorm, &kl, &ku, "No packing", &a[1], &lda, & work[1], &info); /* Check error code from ZLATMS. */ if (info != 0) { alaerh_(path, "ZLATMS", &info, &c__0, " ", &m, &n, &c_n1, &c_n1, &c_n1, &imat, &nfail, &nerrs, nout); goto L50; } /* Set some values for K: the first value must be MINMN, */ /* corresponding to the call of ZQRT01; other values are */ /* used in the calls of ZQRT02, and must not exceed MINMN. */ kval[0] = minmn; kval[1] = 0; kval[2] = 1; kval[3] = minmn / 2; if (minmn == 0) { nk = 1; } else if (minmn == 1) { nk = 2; } else if (minmn <= 3) { nk = 3; } else { nk = 4; } /* Do for each value of K in KVAL */ i__3 = nk; for (ik = 1; ik <= i__3; ++ik) { k = kval[ik - 1]; /* Do for each pair of values (NB,NX) in NBVAL and NXVAL. */ i__4 = *nnb; for (inb = 1; inb <= i__4; ++inb) { nb = nbval[inb]; xlaenv_(&c__1, &nb); nx = nxval[inb]; xlaenv_(&c__3, &nx); for (i__ = 1; i__ <= 8; ++i__) { result[i__ - 1] = 0.; } nt = 2; if (ik == 1) { /* Test ZGEQRF */ zqrt01_(&m, &n, &a[1], &af[1], &aq[1], &ar[1], & lda, &tau[1], &work[1], &lwork, &rwork[1], result); if (! zgennd_(&m, &n, &af[1], &lda)) { result[7] = *thresh * 2; } ++nt; } else if (m >= n) { /* Test ZUNGQR, using factorization */ /* returned by ZQRT01 */ zqrt02_(&m, &n, &k, &a[1], &af[1], &aq[1], &ar[1], &lda, &tau[1], &work[1], &lwork, &rwork[ 1], result); } if (m >= k) { /* Test ZUNMQR, using factorization returned */ /* by ZQRT01 */ zqrt03_(&m, &n, &k, &af[1], &ac[1], &ar[1], &aq[1] , &lda, &tau[1], &work[1], &lwork, &rwork[ 1], &result[2]); nt += 4; /* If M>=N and K=N, call ZGEQRS to solve a system */ /* with NRHS right hand sides and compute the */ /* residual. */ if (k == n && inb == 1) { /* Generate a solution and set the right */ /* hand side. */ s_copy(srnamc_1.srnamt, "ZLARHS", (ftnlen)32, (ftnlen)6); zlarhs_(path, "New", "Full", "No transpose", & m, &n, &c__0, &c__0, nrhs, &a[1], & lda, &xact[1], &lda, &b[1], &lda, iseed, &info); zlacpy_("Full", &m, nrhs, &b[1], &lda, &x[1], &lda); s_copy(srnamc_1.srnamt, "ZGEQRS", (ftnlen)32, (ftnlen)6); zgeqrs_(&m, &n, nrhs, &af[1], &lda, &tau[1], & x[1], &lda, &work[1], &lwork, &info); /* Check error code from ZGEQRS. */ if (info != 0) { alaerh_(path, "ZGEQRS", &info, &c__0, " ", &m, &n, nrhs, &c_n1, &nb, & imat, &nfail, &nerrs, nout); } zget02_("No transpose", &m, &n, nrhs, &a[1], & lda, &x[1], &lda, &b[1], &lda, &rwork[ 1], &result[6]); ++nt; } } /* Print information about the tests that did not */ /* pass the threshold. */ for (i__ = 1; i__ <= 8; ++i__) { if (result[i__ - 1] >= *thresh) { if (nfail == 0 && nerrs == 0) { alahd_(nout, path); } io___33.ciunit = *nout; s_wsfe(&io___33); do_fio(&c__1, (char *)&m, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&n, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&k, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&nb, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&nx, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&imat, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&i__, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&result[i__ - 1], ( ftnlen)sizeof(doublereal)); e_wsfe(); ++nfail; } /* L20: */ } nrun += nt; /* L30: */ } /* L40: */ } L50: ; } /* L60: */ } /* L70: */ } /* Print a summary of the results. */ alasum_(path, nout, &nfail, &nrun, &nerrs); return 0; /* End of ZCHKQR */ } /* zchkqr_ */