/* strt03.f -- translated by f2c (version 20061008). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #include "f2c.h" #include "blaswrap.h" /* Table of constant values */ static integer c__1 = 1; /* Subroutine */ int strt03_(char *uplo, char *trans, char *diag, integer *n, integer *nrhs, real *a, integer *lda, real *scale, real *cnorm, real * tscal, real *x, integer *ldx, real *b, integer *ldb, real *work, real *resid) { /* System generated locals */ integer a_dim1, a_offset, b_dim1, b_offset, x_dim1, x_offset, i__1; real r__1, r__2, r__3; /* Local variables */ integer j, ix; real eps, err; extern logical lsame_(char *, char *); extern /* Subroutine */ int sscal_(integer *, real *, real *, integer *); real xscal; extern /* Subroutine */ int scopy_(integer *, real *, integer *, real *, integer *); real tnorm, xnorm; extern /* Subroutine */ int saxpy_(integer *, real *, real *, integer *, real *, integer *), strmv_(char *, char *, char *, integer *, real *, integer *, real *, integer *), slabad_(real *, real *); extern doublereal slamch_(char *); real bignum; extern integer isamax_(integer *, real *, integer *); real smlnum; /* -- LAPACK test routine (version 3.1) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* STRT03 computes the residual for the solution to a scaled triangular */ /* system of equations A*x = s*b or A'*x = s*b. */ /* Here A is a triangular matrix, A' is the transpose of A, s is a */ /* scalar, and x and b are N by NRHS matrices. The test ratio is the */ /* maximum over the number of right hand sides of */ /* norm(s*b - op(A)*x) / ( norm(op(A)) * norm(x) * EPS ), */ /* where op(A) denotes A or A' and EPS is the machine epsilon. */ /* Arguments */ /* ========= */ /* UPLO (input) CHARACTER*1 */ /* Specifies whether the matrix A is upper or lower triangular. */ /* = 'U': Upper triangular */ /* = 'L': Lower triangular */ /* TRANS (input) CHARACTER*1 */ /* Specifies the operation applied to A. */ /* = 'N': A *x = s*b (No transpose) */ /* = 'T': A'*x = s*b (Transpose) */ /* = 'C': A'*x = s*b (Conjugate transpose = Transpose) */ /* DIAG (input) CHARACTER*1 */ /* Specifies whether or not the matrix A is unit triangular. */ /* = 'N': Non-unit triangular */ /* = 'U': Unit triangular */ /* N (input) INTEGER */ /* The order of the matrix A. N >= 0. */ /* NRHS (input) INTEGER */ /* The number of right hand sides, i.e., the number of columns */ /* of the matrices X and B. NRHS >= 0. */ /* A (input) REAL array, dimension (LDA,N) */ /* The triangular matrix A. If UPLO = 'U', the leading n by n */ /* upper triangular part of the array A contains the upper */ /* triangular matrix, and the strictly lower triangular part of */ /* A is not referenced. If UPLO = 'L', the leading n by n lower */ /* triangular part of the array A contains the lower triangular */ /* matrix, and the strictly upper triangular part of A is not */ /* referenced. If DIAG = 'U', the diagonal elements of A are */ /* also not referenced and are assumed to be 1. */ /* LDA (input) INTEGER */ /* The leading dimension of the array A. LDA >= max(1,N). */ /* SCALE (input) REAL */ /* The scaling factor s used in solving the triangular system. */ /* CNORM (input) REAL array, dimension (N) */ /* The 1-norms of the columns of A, not counting the diagonal. */ /* TSCAL (input) REAL */ /* The scaling factor used in computing the 1-norms in CNORM. */ /* CNORM actually contains the column norms of TSCAL*A. */ /* X (input) REAL array, dimension (LDX,NRHS) */ /* The computed solution vectors for the system of linear */ /* equations. */ /* LDX (input) INTEGER */ /* The leading dimension of the array X. LDX >= max(1,N). */ /* B (input) REAL array, dimension (LDB,NRHS) */ /* The right hand side vectors for the system of linear */ /* equations. */ /* LDB (input) INTEGER */ /* The leading dimension of the array B. LDB >= max(1,N). */ /* WORK (workspace) REAL array, dimension (N) */ /* RESID (output) REAL */ /* The maximum over the number of right hand sides of */ /* norm(op(A)*x - s*b) / ( norm(op(A)) * norm(x) * EPS ). */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Quick exit if N = 0 */ /* Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; --cnorm; x_dim1 = *ldx; x_offset = 1 + x_dim1; x -= x_offset; b_dim1 = *ldb; b_offset = 1 + b_dim1; b -= b_offset; --work; /* Function Body */ if (*n <= 0 || *nrhs <= 0) { *resid = 0.f; return 0; } eps = slamch_("Epsilon"); smlnum = slamch_("Safe minimum"); bignum = 1.f / smlnum; slabad_(&smlnum, &bignum); /* Compute the norm of the triangular matrix A using the column */ /* norms already computed by SLATRS. */ tnorm = 0.f; if (lsame_(diag, "N")) { i__1 = *n; for (j = 1; j <= i__1; ++j) { /* Computing MAX */ r__2 = tnorm, r__3 = *tscal * (r__1 = a[j + j * a_dim1], dabs( r__1)) + cnorm[j]; tnorm = dmax(r__2,r__3); /* L10: */ } } else { i__1 = *n; for (j = 1; j <= i__1; ++j) { /* Computing MAX */ r__1 = tnorm, r__2 = *tscal + cnorm[j]; tnorm = dmax(r__1,r__2); /* L20: */ } } /* Compute the maximum over the number of right hand sides of */ /* norm(op(A)*x - s*b) / ( norm(op(A)) * norm(x) * EPS ). */ *resid = 0.f; i__1 = *nrhs; for (j = 1; j <= i__1; ++j) { scopy_(n, &x[j * x_dim1 + 1], &c__1, &work[1], &c__1); ix = isamax_(n, &work[1], &c__1); /* Computing MAX */ r__2 = 1.f, r__3 = (r__1 = x[ix + j * x_dim1], dabs(r__1)); xnorm = dmax(r__2,r__3); xscal = 1.f / xnorm / (real) (*n); sscal_(n, &xscal, &work[1], &c__1); strmv_(uplo, trans, diag, n, &a[a_offset], lda, &work[1], &c__1); r__1 = -(*scale) * xscal; saxpy_(n, &r__1, &b[j * b_dim1 + 1], &c__1, &work[1], &c__1); ix = isamax_(n, &work[1], &c__1); err = *tscal * (r__1 = work[ix], dabs(r__1)); ix = isamax_(n, &x[j * x_dim1 + 1], &c__1); xnorm = (r__1 = x[ix + j * x_dim1], dabs(r__1)); if (err * smlnum <= xnorm) { if (xnorm > 0.f) { err /= xnorm; } } else { if (err > 0.f) { err = 1.f / eps; } } if (err * smlnum <= tnorm) { if (tnorm > 0.f) { err /= tnorm; } } else { if (err > 0.f) { err = 1.f / eps; } } *resid = dmax(*resid,err); /* L30: */ } return 0; /* End of STRT03 */ } /* strt03_ */