/* sqlt01.f -- translated by f2c (version 20061008). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #include "f2c.h" #include "blaswrap.h" /* Common Block Declarations */ struct { char srnamt[32]; } srnamc_; #define srnamc_1 srnamc_ /* Table of constant values */ static real c_b6 = -1e10f; static real c_b13 = 0.f; static real c_b20 = -1.f; static real c_b21 = 1.f; /* Subroutine */ int sqlt01_(integer *m, integer *n, real *a, real *af, real * q, real *l, integer *lda, real *tau, real *work, integer *lwork, real *rwork, real *result) { /* System generated locals */ integer a_dim1, a_offset, af_dim1, af_offset, l_dim1, l_offset, q_dim1, q_offset, i__1, i__2; /* Builtin functions */ /* Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen); /* Local variables */ real eps; integer info; real resid; extern /* Subroutine */ int sgemm_(char *, char *, integer *, integer *, integer *, real *, real *, integer *, real *, integer *, real *, real *, integer *); real anorm; integer minmn; extern /* Subroutine */ int ssyrk_(char *, char *, integer *, integer *, real *, real *, integer *, real *, real *, integer *); extern doublereal slamch_(char *), slange_(char *, integer *, integer *, real *, integer *, real *); extern /* Subroutine */ int sgeqlf_(integer *, integer *, real *, integer *, real *, real *, integer *, integer *), slacpy_(char *, integer *, integer *, real *, integer *, real *, integer *), slaset_(char *, integer *, integer *, real *, real *, real *, integer *), sorgql_(integer *, integer *, integer *, real *, integer *, real *, real *, integer *, integer *); extern doublereal slansy_(char *, char *, integer *, real *, integer *, real *); /* -- LAPACK test routine (version 3.1) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* SQLT01 tests SGEQLF, which computes the QL factorization of an m-by-n */ /* matrix A, and partially tests SORGQL which forms the m-by-m */ /* orthogonal matrix Q. */ /* SQLT01 compares L with Q'*A, and checks that Q is orthogonal. */ /* Arguments */ /* ========= */ /* M (input) INTEGER */ /* The number of rows of the matrix A. M >= 0. */ /* N (input) INTEGER */ /* The number of columns of the matrix A. N >= 0. */ /* A (input) REAL array, dimension (LDA,N) */ /* The m-by-n matrix A. */ /* AF (output) REAL array, dimension (LDA,N) */ /* Details of the QL factorization of A, as returned by SGEQLF. */ /* See SGEQLF for further details. */ /* Q (output) REAL array, dimension (LDA,M) */ /* The m-by-m orthogonal matrix Q. */ /* L (workspace) REAL array, dimension (LDA,max(M,N)) */ /* LDA (input) INTEGER */ /* The leading dimension of the arrays A, AF, Q and R. */ /* LDA >= max(M,N). */ /* TAU (output) REAL array, dimension (min(M,N)) */ /* The scalar factors of the elementary reflectors, as returned */ /* by SGEQLF. */ /* WORK (workspace) REAL array, dimension (LWORK) */ /* LWORK (input) INTEGER */ /* The dimension of the array WORK. */ /* RWORK (workspace) REAL array, dimension (M) */ /* RESULT (output) REAL array, dimension (2) */ /* The test ratios: */ /* RESULT(1) = norm( L - Q'*A ) / ( M * norm(A) * EPS ) */ /* RESULT(2) = norm( I - Q'*Q ) / ( M * EPS ) */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Scalars in Common .. */ /* .. */ /* .. Common blocks .. */ /* .. */ /* .. Executable Statements .. */ /* Parameter adjustments */ l_dim1 = *lda; l_offset = 1 + l_dim1; l -= l_offset; q_dim1 = *lda; q_offset = 1 + q_dim1; q -= q_offset; af_dim1 = *lda; af_offset = 1 + af_dim1; af -= af_offset; a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; --tau; --work; --rwork; --result; /* Function Body */ minmn = min(*m,*n); eps = slamch_("Epsilon"); /* Copy the matrix A to the array AF. */ slacpy_("Full", m, n, &a[a_offset], lda, &af[af_offset], lda); /* Factorize the matrix A in the array AF. */ s_copy(srnamc_1.srnamt, "SGEQLF", (ftnlen)32, (ftnlen)6); sgeqlf_(m, n, &af[af_offset], lda, &tau[1], &work[1], lwork, &info); /* Copy details of Q */ slaset_("Full", m, m, &c_b6, &c_b6, &q[q_offset], lda); if (*m >= *n) { if (*n < *m && *n > 0) { i__1 = *m - *n; slacpy_("Full", &i__1, n, &af[af_offset], lda, &q[(*m - *n + 1) * q_dim1 + 1], lda); } if (*n > 1) { i__1 = *n - 1; i__2 = *n - 1; slacpy_("Upper", &i__1, &i__2, &af[*m - *n + 1 + (af_dim1 << 1)], lda, &q[*m - *n + 1 + (*m - *n + 2) * q_dim1], lda); } } else { if (*m > 1) { i__1 = *m - 1; i__2 = *m - 1; slacpy_("Upper", &i__1, &i__2, &af[(*n - *m + 2) * af_dim1 + 1], lda, &q[(q_dim1 << 1) + 1], lda); } } /* Generate the m-by-m matrix Q */ s_copy(srnamc_1.srnamt, "SORGQL", (ftnlen)32, (ftnlen)6); sorgql_(m, m, &minmn, &q[q_offset], lda, &tau[1], &work[1], lwork, &info); /* Copy L */ slaset_("Full", m, n, &c_b13, &c_b13, &l[l_offset], lda); if (*m >= *n) { if (*n > 0) { slacpy_("Lower", n, n, &af[*m - *n + 1 + af_dim1], lda, &l[*m - * n + 1 + l_dim1], lda); } } else { if (*n > *m && *m > 0) { i__1 = *n - *m; slacpy_("Full", m, &i__1, &af[af_offset], lda, &l[l_offset], lda); } if (*m > 0) { slacpy_("Lower", m, m, &af[(*n - *m + 1) * af_dim1 + 1], lda, &l[( *n - *m + 1) * l_dim1 + 1], lda); } } /* Compute L - Q'*A */ sgemm_("Transpose", "No transpose", m, n, m, &c_b20, &q[q_offset], lda, & a[a_offset], lda, &c_b21, &l[l_offset], lda); /* Compute norm( L - Q'*A ) / ( M * norm(A) * EPS ) . */ anorm = slange_("1", m, n, &a[a_offset], lda, &rwork[1]); resid = slange_("1", m, n, &l[l_offset], lda, &rwork[1]); if (anorm > 0.f) { result[1] = resid / (real) max(1,*m) / anorm / eps; } else { result[1] = 0.f; } /* Compute I - Q'*Q */ slaset_("Full", m, m, &c_b13, &c_b21, &l[l_offset], lda); ssyrk_("Upper", "Transpose", m, m, &c_b20, &q[q_offset], lda, &c_b21, &l[ l_offset], lda); /* Compute norm( I - Q'*Q ) / ( M * EPS ) . */ resid = slansy_("1", "Upper", m, &l[l_offset], lda, &rwork[1]); result[2] = resid / (real) max(1,*m) / eps; return 0; /* End of SQLT01 */ } /* sqlt01_ */