/* sgelqs.f -- translated by f2c (version 20061008). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #include "f2c.h" #include "blaswrap.h" /* Table of constant values */ static real c_b7 = 1.f; static real c_b9 = 0.f; /* Subroutine */ int sgelqs_(integer *m, integer *n, integer *nrhs, real *a, integer *lda, real *tau, real *b, integer *ldb, real *work, integer * lwork, integer *info) { /* System generated locals */ integer a_dim1, a_offset, b_dim1, b_offset, i__1; /* Local variables */ extern /* Subroutine */ int strsm_(char *, char *, char *, char *, integer *, integer *, real *, real *, integer *, real *, integer * ), xerbla_(char *, integer *), slaset_(char *, integer *, integer *, real *, real *, real *, integer *), sormlq_(char *, char *, integer *, integer *, integer *, real *, integer *, real *, real *, integer * , real *, integer *, integer *); /* -- LAPACK routine (version 3.1) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* Compute a minimum-norm solution */ /* min || A*X - B || */ /* using the LQ factorization */ /* A = L*Q */ /* computed by SGELQF. */ /* Arguments */ /* ========= */ /* M (input) INTEGER */ /* The number of rows of the matrix A. M >= 0. */ /* N (input) INTEGER */ /* The number of columns of the matrix A. N >= M >= 0. */ /* NRHS (input) INTEGER */ /* The number of columns of B. NRHS >= 0. */ /* A (input) REAL array, dimension (LDA,N) */ /* Details of the LQ factorization of the original matrix A as */ /* returned by SGELQF. */ /* LDA (input) INTEGER */ /* The leading dimension of the array A. LDA >= M. */ /* TAU (input) REAL array, dimension (M) */ /* Details of the orthogonal matrix Q. */ /* B (input/output) REAL array, dimension (LDB,NRHS) */ /* On entry, the m-by-nrhs right hand side matrix B. */ /* On exit, the n-by-nrhs solution matrix X. */ /* LDB (input) INTEGER */ /* The leading dimension of the array B. LDB >= N. */ /* WORK (workspace) REAL array, dimension (LWORK) */ /* LWORK (input) INTEGER */ /* The length of the array WORK. LWORK must be at least NRHS, */ /* and should be at least NRHS*NB, where NB is the block size */ /* for this environment. */ /* INFO (output) INTEGER */ /* = 0: successful exit */ /* < 0: if INFO = -i, the i-th argument had an illegal value */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Test the input parameters. */ /* Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; --tau; b_dim1 = *ldb; b_offset = 1 + b_dim1; b -= b_offset; --work; /* Function Body */ *info = 0; if (*m < 0) { *info = -1; } else if (*n < 0 || *m > *n) { *info = -2; } else if (*nrhs < 0) { *info = -3; } else if (*lda < max(1,*m)) { *info = -5; } else if (*ldb < max(1,*n)) { *info = -8; } else if (*lwork < 1 || *lwork < *nrhs && *m > 0 && *n > 0) { *info = -10; } if (*info != 0) { i__1 = -(*info); xerbla_("SGELQS", &i__1); return 0; } /* Quick return if possible */ if (*n == 0 || *nrhs == 0 || *m == 0) { return 0; } /* Solve L*X = B(1:m,:) */ strsm_("Left", "Lower", "No transpose", "Non-unit", m, nrhs, &c_b7, &a[ a_offset], lda, &b[b_offset], ldb); /* Set B(m+1:n,:) to zero */ if (*m < *n) { i__1 = *n - *m; slaset_("Full", &i__1, nrhs, &c_b9, &c_b9, &b[*m + 1 + b_dim1], ldb); } /* B := Q' * B */ sormlq_("Left", "Transpose", n, nrhs, m, &a[a_offset], lda, &tau[1], &b[ b_offset], ldb, &work[1], lwork, info); return 0; /* End of SGELQS */ } /* sgelqs_ */