/* dptt01.f -- translated by f2c (version 20061008). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #include "f2c.h" #include "blaswrap.h" /* Subroutine */ int dptt01_(integer *n, doublereal *d__, doublereal *e, doublereal *df, doublereal *ef, doublereal *work, doublereal *resid) { /* System generated locals */ integer i__1; doublereal d__1, d__2, d__3, d__4, d__5; /* Local variables */ integer i__; doublereal de, eps, anorm; extern doublereal dlamch_(char *); /* -- LAPACK test routine (version 3.1) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* DPTT01 reconstructs a tridiagonal matrix A from its L*D*L' */ /* factorization and computes the residual */ /* norm(L*D*L' - A) / ( n * norm(A) * EPS ), */ /* where EPS is the machine epsilon. */ /* Arguments */ /* ========= */ /* N (input) INTEGTER */ /* The order of the matrix A. */ /* D (input) DOUBLE PRECISION array, dimension (N) */ /* The n diagonal elements of the tridiagonal matrix A. */ /* E (input) DOUBLE PRECISION array, dimension (N-1) */ /* The (n-1) subdiagonal elements of the tridiagonal matrix A. */ /* DF (input) DOUBLE PRECISION array, dimension (N) */ /* The n diagonal elements of the factor L from the L*D*L' */ /* factorization of A. */ /* EF (input) DOUBLE PRECISION array, dimension (N-1) */ /* The (n-1) subdiagonal elements of the factor L from the */ /* L*D*L' factorization of A. */ /* WORK (workspace) DOUBLE PRECISION array, dimension (2*N) */ /* RESID (output) DOUBLE PRECISION */ /* norm(L*D*L' - A) / (n * norm(A) * EPS) */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Quick return if possible */ /* Parameter adjustments */ --work; --ef; --df; --e; --d__; /* Function Body */ if (*n <= 0) { *resid = 0.; return 0; } eps = dlamch_("Epsilon"); /* Construct the difference L*D*L' - A. */ work[1] = df[1] - d__[1]; i__1 = *n - 1; for (i__ = 1; i__ <= i__1; ++i__) { de = df[i__] * ef[i__]; work[*n + i__] = de - e[i__]; work[i__ + 1] = de * ef[i__] + df[i__ + 1] - d__[i__ + 1]; /* L10: */ } /* Compute the 1-norms of the tridiagonal matrices A and WORK. */ if (*n == 1) { anorm = d__[1]; *resid = abs(work[1]); } else { /* Computing MAX */ d__2 = d__[1] + abs(e[1]), d__3 = d__[*n] + (d__1 = e[*n - 1], abs( d__1)); anorm = max(d__2,d__3); /* Computing MAX */ d__4 = abs(work[1]) + (d__1 = work[*n + 1], abs(d__1)), d__5 = (d__2 = work[*n], abs(d__2)) + (d__3 = work[(*n << 1) - 1], abs(d__3) ); *resid = max(d__4,d__5); i__1 = *n - 1; for (i__ = 2; i__ <= i__1; ++i__) { /* Computing MAX */ d__3 = anorm, d__4 = d__[i__] + (d__1 = e[i__], abs(d__1)) + ( d__2 = e[i__ - 1], abs(d__2)); anorm = max(d__3,d__4); /* Computing MAX */ d__4 = *resid, d__5 = (d__1 = work[i__], abs(d__1)) + (d__2 = work[*n + i__ - 1], abs(d__2)) + (d__3 = work[*n + i__], abs(d__3)); *resid = max(d__4,d__5); /* L20: */ } } /* Compute norm(L*D*L' - A) / (n * norm(A) * EPS) */ if (anorm <= 0.) { if (*resid != 0.) { *resid = 1. / eps; } } else { *resid = *resid / (doublereal) (*n) / anorm / eps; } return 0; /* End of DPTT01 */ } /* dptt01_ */