/* ddrvls.f -- translated by f2c (version 20061008).
   You must link the resulting object file with libf2c:
	on Microsoft Windows system, link with libf2c.lib;
	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
	or, if you install libf2c.a in a standard place, with -lf2c -lm
	-- in that order, at the end of the command line, as in
		cc *.o -lf2c -lm
	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,

		http://www.netlib.org/f2c/libf2c.zip
*/

#include "f2c.h"
#include "blaswrap.h"

/* Common Block Declarations */

struct {
    integer infot, iounit;
    logical ok, lerr;
} infoc_;

#define infoc_1 infoc_

struct {
    char srnamt[32];
} srnamc_;

#define srnamc_1 srnamc_

/* Table of constant values */

static integer c__2 = 2;
static integer c__9 = 9;
static integer c__25 = 25;
static integer c__1 = 1;
static integer c__3 = 3;
static doublereal c_b28 = 1.;
static doublereal c_b29 = 0.;
static integer c__0 = 0;
static integer c_n1 = -1;
static doublereal c_b96 = -1.;

/* Subroutine */ int ddrvls_(logical *dotype, integer *nm, integer *mval, 
	integer *nn, integer *nval, integer *nns, integer *nsval, integer *
	nnb, integer *nbval, integer *nxval, doublereal *thresh, logical *
	tsterr, doublereal *a, doublereal *copya, doublereal *b, doublereal *
	copyb, doublereal *c__, doublereal *s, doublereal *copys, doublereal *
	work, integer *iwork, integer *nout)
{
    /* Initialized data */

    static integer iseedy[4] = { 1988,1989,1990,1991 };

    /* Format strings */
    static char fmt_9999[] = "(\002 TRANS='\002,a1,\002', M=\002,i5,\002, N"
	    "=\002,i5,\002, NRHS=\002,i4,\002, NB=\002,i4,\002, type\002,i2"
	    ",\002, test(\002,i2,\002)=\002,g12.5)";
    static char fmt_9998[] = "(\002 M=\002,i5,\002, N=\002,i5,\002, NRHS="
	    "\002,i4,\002, NB=\002,i4,\002, type\002,i2,\002, test(\002,i2"
	    ",\002)=\002,g12.5)";

    /* System generated locals */
    integer i__1, i__2, i__3, i__4, i__5, i__6;
    doublereal d__1, d__2;

    /* Builtin functions */
    /* Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen);
    double sqrt(doublereal), log(doublereal);
    integer s_wsfe(cilist *), do_fio(integer *, char *, ftnlen), e_wsfe(void);

    /* Local variables */
    integer i__, j, k, m, n, nb, im, in, lda, ldb, inb;
    doublereal eps;
    integer ins, info;
    char path[3];
    integer rank, nrhs, nlvl, nrun;
    extern /* Subroutine */ int alahd_(integer *, char *), dscal_(
	    integer *, doublereal *, doublereal *, integer *);
    integer nfail, iseed[4];
    extern /* Subroutine */ int dgemm_(char *, char *, integer *, integer *, 
	    integer *, doublereal *, doublereal *, integer *, doublereal *, 
	    integer *, doublereal *, doublereal *, integer *);
    integer crank;
    extern /* Subroutine */ int dgels_(char *, integer *, integer *, integer *
, doublereal *, integer *, doublereal *, integer *, doublereal *, 
	    integer *, integer *);
    integer irank;
    doublereal rcond;
    extern doublereal dasum_(integer *, doublereal *, integer *);
    integer itran, mnmin, ncols;
    doublereal norma, normb;
    extern doublereal dqrt12_(integer *, integer *, doublereal *, integer *, 
	    doublereal *, doublereal *, integer *), dqrt14_(char *, integer *, 
	     integer *, integer *, doublereal *, integer *, doublereal *, 
	    integer *, doublereal *, integer *), dqrt17_(char *, 
	    integer *, integer *, integer *, integer *, doublereal *, integer 
	    *, doublereal *, integer *, doublereal *, integer *, doublereal *, 
	     doublereal *, integer *);
    extern /* Subroutine */ int daxpy_(integer *, doublereal *, doublereal *, 
	    integer *, doublereal *, integer *);
    char trans[1];
    integer nerrs, itype;
    extern /* Subroutine */ int dqrt13_(integer *, integer *, integer *, 
	    doublereal *, integer *, doublereal *, integer *);
    integer lwork;
    extern /* Subroutine */ int dqrt15_(integer *, integer *, integer *, 
	    integer *, integer *, doublereal *, integer *, doublereal *, 
	    integer *, doublereal *, integer *, doublereal *, doublereal *, 
	    integer *, doublereal *, integer *), dqrt16_(char *, integer *, 
	    integer *, integer *, doublereal *, integer *, doublereal *, 
	    integer *, doublereal *, integer *, doublereal *, doublereal *);
    integer nrows, lwlsy;
    extern doublereal dlamch_(char *);
    extern /* Subroutine */ int alaerh_(char *, char *, integer *, integer *, 
	    char *, integer *, integer *, integer *, integer *, integer *, 
	    integer *, integer *, integer *, integer *);
    integer iscale;
    extern /* Subroutine */ int dgelsd_(integer *, integer *, integer *, 
	    doublereal *, integer *, doublereal *, integer *, doublereal *, 
	    doublereal *, integer *, doublereal *, integer *, integer *, 
	    integer *), dlacpy_(char *, integer *, integer *, doublereal *, 
	    integer *, doublereal *, integer *), dgelss_(integer *, 
	    integer *, integer *, doublereal *, integer *, doublereal *, 
	    integer *, doublereal *, doublereal *, integer *, doublereal *, 
	    integer *, integer *), alasvm_(char *, integer *, integer *, 
	    integer *, integer *), dgelsx_(integer *, integer *, 
	    integer *, doublereal *, integer *, doublereal *, integer *, 
	    integer *, doublereal *, integer *, doublereal *, integer *), 
	    dgelsy_(integer *, integer *, integer *, doublereal *, integer *, 
	    doublereal *, integer *, integer *, doublereal *, integer *, 
	    doublereal *, integer *, integer *), dlarnv_(integer *, integer *, 
	     integer *, doublereal *), derrls_(char *, integer *), 
	    xlaenv_(integer *, integer *);
    integer ldwork;
    doublereal result[18];

    /* Fortran I/O blocks */
    static cilist io___35 = { 0, 0, 0, fmt_9999, 0 };
    static cilist io___40 = { 0, 0, 0, fmt_9998, 0 };
    static cilist io___42 = { 0, 0, 0, fmt_9998, 0 };



/*  -- LAPACK test routine (version 3.1.1) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     January 2007 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  DDRVLS tests the least squares driver routines DGELS, DGELSS, DGELSX, */
/*  DGELSY and DGELSD. */

/*  Arguments */
/*  ========= */

/*  DOTYPE  (input) LOGICAL array, dimension (NTYPES) */
/*          The matrix types to be used for testing.  Matrices of type j */
/*          (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) = */
/*          .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used. */
/*          The matrix of type j is generated as follows: */
/*          j=1: A = U*D*V where U and V are random orthogonal matrices */
/*               and D has random entries (> 0.1) taken from a uniform */
/*               distribution (0,1). A is full rank. */
/*          j=2: The same of 1, but A is scaled up. */
/*          j=3: The same of 1, but A is scaled down. */
/*          j=4: A = U*D*V where U and V are random orthogonal matrices */
/*               and D has 3*min(M,N)/4 random entries (> 0.1) taken */
/*               from a uniform distribution (0,1) and the remaining */
/*               entries set to 0. A is rank-deficient. */
/*          j=5: The same of 4, but A is scaled up. */
/*          j=6: The same of 5, but A is scaled down. */

/*  NM      (input) INTEGER */
/*          The number of values of M contained in the vector MVAL. */

/*  MVAL    (input) INTEGER array, dimension (NM) */
/*          The values of the matrix row dimension M. */

/*  NN      (input) INTEGER */
/*          The number of values of N contained in the vector NVAL. */

/*  NVAL    (input) INTEGER array, dimension (NN) */
/*          The values of the matrix column dimension N. */

/*  NNS     (input) INTEGER */
/*          The number of values of NRHS contained in the vector NSVAL. */

/*  NSVAL   (input) INTEGER array, dimension (NNS) */
/*          The values of the number of right hand sides NRHS. */

/*  NNB     (input) INTEGER */
/*          The number of values of NB and NX contained in the */
/*          vectors NBVAL and NXVAL.  The blocking parameters are used */
/*          in pairs (NB,NX). */

/*  NBVAL   (input) INTEGER array, dimension (NNB) */
/*          The values of the blocksize NB. */

/*  NXVAL   (input) INTEGER array, dimension (NNB) */
/*          The values of the crossover point NX. */

/*  THRESH  (input) DOUBLE PRECISION */
/*          The threshold value for the test ratios.  A result is */
/*          included in the output file if RESULT >= THRESH.  To have */
/*          every test ratio printed, use THRESH = 0. */

/*  TSTERR  (input) LOGICAL */
/*          Flag that indicates whether error exits are to be tested. */

/*  A       (workspace) DOUBLE PRECISION array, dimension (MMAX*NMAX) */
/*          where MMAX is the maximum value of M in MVAL and NMAX is the */
/*          maximum value of N in NVAL. */

/*  COPYA   (workspace) DOUBLE PRECISION array, dimension (MMAX*NMAX) */

/*  B       (workspace) DOUBLE PRECISION array, dimension (MMAX*NSMAX) */
/*          where MMAX is the maximum value of M in MVAL and NSMAX is the */
/*          maximum value of NRHS in NSVAL. */

/*  COPYB   (workspace) DOUBLE PRECISION array, dimension (MMAX*NSMAX) */

/*  C       (workspace) DOUBLE PRECISION array, dimension (MMAX*NSMAX) */

/*  S       (workspace) DOUBLE PRECISION array, dimension */
/*                      (min(MMAX,NMAX)) */

/*  COPYS   (workspace) DOUBLE PRECISION array, dimension */
/*                      (min(MMAX,NMAX)) */

/*  WORK    (workspace) DOUBLE PRECISION array, */
/*                      dimension (MMAX*NMAX + 4*NMAX + MMAX). */

/*  IWORK   (workspace) INTEGER array, dimension (15*NMAX) */

/*  NOUT    (input) INTEGER */
/*          The unit number for output. */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. Local Arrays .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Scalars in Common .. */
/*     .. */
/*     .. Common blocks .. */
/*     .. */
/*     .. Data statements .. */
    /* Parameter adjustments */
    --iwork;
    --work;
    --copys;
    --s;
    --c__;
    --copyb;
    --b;
    --copya;
    --a;
    --nxval;
    --nbval;
    --nsval;
    --nval;
    --mval;
    --dotype;

    /* Function Body */
/*     .. */
/*     .. Executable Statements .. */

/*     Initialize constants and the random number seed. */

    s_copy(path, "Double precision", (ftnlen)1, (ftnlen)16);
    s_copy(path + 1, "LS", (ftnlen)2, (ftnlen)2);
    nrun = 0;
    nfail = 0;
    nerrs = 0;
    for (i__ = 1; i__ <= 4; ++i__) {
	iseed[i__ - 1] = iseedy[i__ - 1];
/* L10: */
    }
    eps = dlamch_("Epsilon");

/*     Threshold for rank estimation */

    rcond = sqrt(eps) - (sqrt(eps) - eps) / 2;

/*     Test the error exits */

    xlaenv_(&c__2, &c__2);
    xlaenv_(&c__9, &c__25);
    if (*tsterr) {
	derrls_(path, nout);
    }

/*     Print the header if NM = 0 or NN = 0 and THRESH = 0. */

    if ((*nm == 0 || *nn == 0) && *thresh == 0.) {
	alahd_(nout, path);
    }
    infoc_1.infot = 0;
    xlaenv_(&c__2, &c__2);
    xlaenv_(&c__9, &c__25);

    i__1 = *nm;
    for (im = 1; im <= i__1; ++im) {
	m = mval[im];
	lda = max(1,m);

	i__2 = *nn;
	for (in = 1; in <= i__2; ++in) {
	    n = nval[in];
	    mnmin = min(m,n);
/* Computing MAX */
	    i__3 = max(1,m);
	    ldb = max(i__3,n);

	    i__3 = *nns;
	    for (ins = 1; ins <= i__3; ++ins) {
		nrhs = nsval[ins];
/* Computing MAX */
/* Computing MAX */
		d__1 = 1., d__2 = (doublereal) mnmin;
		i__4 = (integer) (log(max(d__1,d__2) / 26.) / log(2.)) + 1;
		nlvl = max(i__4,0);
/* Computing MAX */
		i__4 = 1, i__5 = (m + nrhs) * (n + 2), i__4 = max(i__4,i__5), 
			i__5 = (n + nrhs) * (m + 2), i__4 = max(i__4,i__5), 
			i__5 = m * n + (mnmin << 2) + max(m,n), i__4 = max(
			i__4,i__5), i__5 = mnmin * 12 + mnmin * 50 + (mnmin <<
			 3) * nlvl + mnmin * nrhs + 676;
		lwork = max(i__4,i__5);

		for (irank = 1; irank <= 2; ++irank) {
		    for (iscale = 1; iscale <= 3; ++iscale) {
			itype = (irank - 1) * 3 + iscale;
			if (! dotype[itype]) {
			    goto L110;
			}

			if (irank == 1) {

/*                       Test DGELS */

/*                       Generate a matrix of scaling type ISCALE */

			    dqrt13_(&iscale, &m, &n, &copya[1], &lda, &norma, 
				    iseed);
			    i__4 = *nnb;
			    for (inb = 1; inb <= i__4; ++inb) {
				nb = nbval[inb];
				xlaenv_(&c__1, &nb);
				xlaenv_(&c__3, &nxval[inb]);

				for (itran = 1; itran <= 2; ++itran) {
				    if (itran == 1) {
					*(unsigned char *)trans = 'N';
					nrows = m;
					ncols = n;
				    } else {
					*(unsigned char *)trans = 'T';
					nrows = n;
					ncols = m;
				    }
				    ldwork = max(1,ncols);

/*                             Set up a consistent rhs */

				    if (ncols > 0) {
					i__5 = ncols * nrhs;
					dlarnv_(&c__2, iseed, &i__5, &work[1])
						;
					i__5 = ncols * nrhs;
					d__1 = 1. / (doublereal) ncols;
					dscal_(&i__5, &d__1, &work[1], &c__1);
				    }
				    dgemm_(trans, "No transpose", &nrows, &
					    nrhs, &ncols, &c_b28, &copya[1], &
					    lda, &work[1], &ldwork, &c_b29, &
					    b[1], &ldb)
					    ;
				    dlacpy_("Full", &nrows, &nrhs, &b[1], &
					    ldb, &copyb[1], &ldb);

/*                             Solve LS or overdetermined system */

				    if (m > 0 && n > 0) {
					dlacpy_("Full", &m, &n, &copya[1], &
						lda, &a[1], &lda);
					dlacpy_("Full", &nrows, &nrhs, &copyb[
						1], &ldb, &b[1], &ldb);
				    }
				    s_copy(srnamc_1.srnamt, "DGELS ", (ftnlen)
					    32, (ftnlen)6);
				    dgels_(trans, &m, &n, &nrhs, &a[1], &lda, 
					    &b[1], &ldb, &work[1], &lwork, &
					    info);
				    if (info != 0) {
					alaerh_(path, "DGELS ", &info, &c__0, 
						trans, &m, &n, &nrhs, &c_n1, &
						nb, &itype, &nfail, &nerrs, 
						nout);
				    }

/*                             Check correctness of results */

				    ldwork = max(1,nrows);
				    if (nrows > 0 && nrhs > 0) {
					dlacpy_("Full", &nrows, &nrhs, &copyb[
						1], &ldb, &c__[1], &ldb);
				    }
				    dqrt16_(trans, &m, &n, &nrhs, &copya[1], &
					    lda, &b[1], &ldb, &c__[1], &ldb, &
					    work[1], result);

				    if (itran == 1 && m >= n || itran == 2 && 
					    m < n) {

/*                                Solving LS system */

					result[1] = dqrt17_(trans, &c__1, &m, 
						&n, &nrhs, &copya[1], &lda, &
						b[1], &ldb, &copyb[1], &ldb, &
						c__[1], &work[1], &lwork);
				    } else {

/*                                Solving overdetermined system */

					result[1] = dqrt14_(trans, &m, &n, &
						nrhs, &copya[1], &lda, &b[1], 
						&ldb, &work[1], &lwork);
				    }

/*                             Print information about the tests that */
/*                             did not pass the threshold. */

				    for (k = 1; k <= 2; ++k) {
					if (result[k - 1] >= *thresh) {
					    if (nfail == 0 && nerrs == 0) {
			  alahd_(nout, path);
					    }
					    io___35.ciunit = *nout;
					    s_wsfe(&io___35);
					    do_fio(&c__1, trans, (ftnlen)1);
					    do_fio(&c__1, (char *)&m, (ftnlen)
						    sizeof(integer));
					    do_fio(&c__1, (char *)&n, (ftnlen)
						    sizeof(integer));
					    do_fio(&c__1, (char *)&nrhs, (
						    ftnlen)sizeof(integer));
					    do_fio(&c__1, (char *)&nb, (
						    ftnlen)sizeof(integer));
					    do_fio(&c__1, (char *)&itype, (
						    ftnlen)sizeof(integer));
					    do_fio(&c__1, (char *)&k, (ftnlen)
						    sizeof(integer));
					    do_fio(&c__1, (char *)&result[k - 
						    1], (ftnlen)sizeof(
						    doublereal));
					    e_wsfe();
					    ++nfail;
					}
/* L20: */
				    }
				    nrun += 2;
/* L30: */
				}
/* L40: */
			    }
			}

/*                    Generate a matrix of scaling type ISCALE and rank */
/*                    type IRANK. */

			dqrt15_(&iscale, &irank, &m, &n, &nrhs, &copya[1], &
				lda, &copyb[1], &ldb, &copys[1], &rank, &
				norma, &normb, iseed, &work[1], &lwork);

/*                    workspace used: MAX(M+MIN(M,N),NRHS*MIN(M,N),2*N+M) */

/*                    Initialize vector IWORK. */

			i__4 = n;
			for (j = 1; j <= i__4; ++j) {
			    iwork[j] = 0;
/* L50: */
			}
			ldwork = max(1,m);

/*                    Test DGELSX */

/*                    DGELSX:  Compute the minimum-norm solution X */
/*                    to min( norm( A * X - B ) ) using a complete */
/*                    orthogonal factorization. */

			dlacpy_("Full", &m, &n, &copya[1], &lda, &a[1], &lda);
			dlacpy_("Full", &m, &nrhs, &copyb[1], &ldb, &b[1], &
				ldb);

			s_copy(srnamc_1.srnamt, "DGELSX", (ftnlen)32, (ftnlen)
				6);
			dgelsx_(&m, &n, &nrhs, &a[1], &lda, &b[1], &ldb, &
				iwork[1], &rcond, &crank, &work[1], &info);
			if (info != 0) {
			    alaerh_(path, "DGELSX", &info, &c__0, " ", &m, &n, 
				     &nrhs, &c_n1, &nb, &itype, &nfail, &
				    nerrs, nout);
			}

/*                    workspace used: MAX( MNMIN+3*N, 2*MNMIN+NRHS ) */

/*                    Test 3:  Compute relative error in svd */
/*                             workspace: M*N + 4*MIN(M,N) + MAX(M,N) */

			result[2] = dqrt12_(&crank, &crank, &a[1], &lda, &
				copys[1], &work[1], &lwork);

/*                    Test 4:  Compute error in solution */
/*                             workspace:  M*NRHS + M */

			dlacpy_("Full", &m, &nrhs, &copyb[1], &ldb, &work[1], 
				&ldwork);
			dqrt16_("No transpose", &m, &n, &nrhs, &copya[1], &
				lda, &b[1], &ldb, &work[1], &ldwork, &work[m *
				 nrhs + 1], &result[3]);

/*                    Test 5:  Check norm of r'*A */
/*                             workspace: NRHS*(M+N) */

			result[4] = 0.;
			if (m > crank) {
			    result[4] = dqrt17_("No transpose", &c__1, &m, &n, 
				     &nrhs, &copya[1], &lda, &b[1], &ldb, &
				    copyb[1], &ldb, &c__[1], &work[1], &lwork);
			}

/*                    Test 6:  Check if x is in the rowspace of A */
/*                             workspace: (M+NRHS)*(N+2) */

			result[5] = 0.;

			if (n > crank) {
			    result[5] = dqrt14_("No transpose", &m, &n, &nrhs, 
				     &copya[1], &lda, &b[1], &ldb, &work[1], &
				    lwork);
			}

/*                    Print information about the tests that did not */
/*                    pass the threshold. */

			for (k = 3; k <= 6; ++k) {
			    if (result[k - 1] >= *thresh) {
				if (nfail == 0 && nerrs == 0) {
				    alahd_(nout, path);
				}
				io___40.ciunit = *nout;
				s_wsfe(&io___40);
				do_fio(&c__1, (char *)&m, (ftnlen)sizeof(
					integer));
				do_fio(&c__1, (char *)&n, (ftnlen)sizeof(
					integer));
				do_fio(&c__1, (char *)&nrhs, (ftnlen)sizeof(
					integer));
				do_fio(&c__1, (char *)&nb, (ftnlen)sizeof(
					integer));
				do_fio(&c__1, (char *)&itype, (ftnlen)sizeof(
					integer));
				do_fio(&c__1, (char *)&k, (ftnlen)sizeof(
					integer));
				do_fio(&c__1, (char *)&result[k - 1], (ftnlen)
					sizeof(doublereal));
				e_wsfe();
				++nfail;
			    }
/* L60: */
			}
			nrun += 4;

/*                    Loop for testing different block sizes. */

			i__4 = *nnb;
			for (inb = 1; inb <= i__4; ++inb) {
			    nb = nbval[inb];
			    xlaenv_(&c__1, &nb);
			    xlaenv_(&c__3, &nxval[inb]);

/*                       Test DGELSY */

/*                       DGELSY:  Compute the minimum-norm solution X */
/*                       to min( norm( A * X - B ) ) */
/*                       using the rank-revealing orthogonal */
/*                       factorization. */

/*                       Initialize vector IWORK. */

			    i__5 = n;
			    for (j = 1; j <= i__5; ++j) {
				iwork[j] = 0;
/* L70: */
			    }

/*                       Set LWLSY to the adequate value. */

/* Computing MAX */
			    i__5 = 1, i__6 = mnmin + (n << 1) + nb * (n + 1), 
				    i__5 = max(i__5,i__6), i__6 = (mnmin << 1)
				     + nb * nrhs;
			    lwlsy = max(i__5,i__6);

			    dlacpy_("Full", &m, &n, &copya[1], &lda, &a[1], &
				    lda);
			    dlacpy_("Full", &m, &nrhs, &copyb[1], &ldb, &b[1], 
				     &ldb);

			    s_copy(srnamc_1.srnamt, "DGELSY", (ftnlen)32, (
				    ftnlen)6);
			    dgelsy_(&m, &n, &nrhs, &a[1], &lda, &b[1], &ldb, &
				    iwork[1], &rcond, &crank, &work[1], &
				    lwlsy, &info);
			    if (info != 0) {
				alaerh_(path, "DGELSY", &info, &c__0, " ", &m, 
					 &n, &nrhs, &c_n1, &nb, &itype, &
					nfail, &nerrs, nout);
			    }

/*                       Test 7:  Compute relative error in svd */
/*                                workspace: M*N + 4*MIN(M,N) + MAX(M,N) */

			    result[6] = dqrt12_(&crank, &crank, &a[1], &lda, &
				    copys[1], &work[1], &lwork);

/*                       Test 8:  Compute error in solution */
/*                                workspace:  M*NRHS + M */

			    dlacpy_("Full", &m, &nrhs, &copyb[1], &ldb, &work[
				    1], &ldwork);
			    dqrt16_("No transpose", &m, &n, &nrhs, &copya[1], 
				    &lda, &b[1], &ldb, &work[1], &ldwork, &
				    work[m * nrhs + 1], &result[7]);

/*                       Test 9:  Check norm of r'*A */
/*                                workspace: NRHS*(M+N) */

			    result[8] = 0.;
			    if (m > crank) {
				result[8] = dqrt17_("No transpose", &c__1, &m, 
					 &n, &nrhs, &copya[1], &lda, &b[1], &
					ldb, &copyb[1], &ldb, &c__[1], &work[
					1], &lwork);
			    }

/*                       Test 10:  Check if x is in the rowspace of A */
/*                                workspace: (M+NRHS)*(N+2) */

			    result[9] = 0.;

			    if (n > crank) {
				result[9] = dqrt14_("No transpose", &m, &n, &
					nrhs, &copya[1], &lda, &b[1], &ldb, &
					work[1], &lwork);
			    }

/*                       Test DGELSS */

/*                       DGELSS:  Compute the minimum-norm solution X */
/*                       to min( norm( A * X - B ) ) */
/*                       using the SVD. */

			    dlacpy_("Full", &m, &n, &copya[1], &lda, &a[1], &
				    lda);
			    dlacpy_("Full", &m, &nrhs, &copyb[1], &ldb, &b[1], 
				     &ldb);
			    s_copy(srnamc_1.srnamt, "DGELSS", (ftnlen)32, (
				    ftnlen)6);
			    dgelss_(&m, &n, &nrhs, &a[1], &lda, &b[1], &ldb, &
				    s[1], &rcond, &crank, &work[1], &lwork, &
				    info);
			    if (info != 0) {
				alaerh_(path, "DGELSS", &info, &c__0, " ", &m, 
					 &n, &nrhs, &c_n1, &nb, &itype, &
					nfail, &nerrs, nout);
			    }

/*                       workspace used: 3*min(m,n) + */
/*                                       max(2*min(m,n),nrhs,max(m,n)) */

/*                       Test 11:  Compute relative error in svd */

			    if (rank > 0) {
				daxpy_(&mnmin, &c_b96, &copys[1], &c__1, &s[1]
, &c__1);
				result[10] = dasum_(&mnmin, &s[1], &c__1) / 
					dasum_(&mnmin, &copys[1], &c__1) / (
					eps * (doublereal) mnmin);
			    } else {
				result[10] = 0.;
			    }

/*                       Test 12:  Compute error in solution */

			    dlacpy_("Full", &m, &nrhs, &copyb[1], &ldb, &work[
				    1], &ldwork);
			    dqrt16_("No transpose", &m, &n, &nrhs, &copya[1], 
				    &lda, &b[1], &ldb, &work[1], &ldwork, &
				    work[m * nrhs + 1], &result[11]);

/*                       Test 13:  Check norm of r'*A */

			    result[12] = 0.;
			    if (m > crank) {
				result[12] = dqrt17_("No transpose", &c__1, &
					m, &n, &nrhs, &copya[1], &lda, &b[1], 
					&ldb, &copyb[1], &ldb, &c__[1], &work[
					1], &lwork);
			    }

/*                       Test 14:  Check if x is in the rowspace of A */

			    result[13] = 0.;
			    if (n > crank) {
				result[13] = dqrt14_("No transpose", &m, &n, &
					nrhs, &copya[1], &lda, &b[1], &ldb, &
					work[1], &lwork);
			    }

/*                       Test DGELSD */

/*                       DGELSD:  Compute the minimum-norm solution X */
/*                       to min( norm( A * X - B ) ) using a */
/*                       divide and conquer SVD. */

/*                       Initialize vector IWORK. */

			    i__5 = n;
			    for (j = 1; j <= i__5; ++j) {
				iwork[j] = 0;
/* L80: */
			    }

			    dlacpy_("Full", &m, &n, &copya[1], &lda, &a[1], &
				    lda);
			    dlacpy_("Full", &m, &nrhs, &copyb[1], &ldb, &b[1], 
				     &ldb);

			    s_copy(srnamc_1.srnamt, "DGELSD", (ftnlen)32, (
				    ftnlen)6);
			    dgelsd_(&m, &n, &nrhs, &a[1], &lda, &b[1], &ldb, &
				    s[1], &rcond, &crank, &work[1], &lwork, &
				    iwork[1], &info);
			    if (info != 0) {
				alaerh_(path, "DGELSD", &info, &c__0, " ", &m, 
					 &n, &nrhs, &c_n1, &nb, &itype, &
					nfail, &nerrs, nout);
			    }

/*                       Test 15:  Compute relative error in svd */

			    if (rank > 0) {
				daxpy_(&mnmin, &c_b96, &copys[1], &c__1, &s[1]
, &c__1);
				result[14] = dasum_(&mnmin, &s[1], &c__1) / 
					dasum_(&mnmin, &copys[1], &c__1) / (
					eps * (doublereal) mnmin);
			    } else {
				result[14] = 0.;
			    }

/*                       Test 16:  Compute error in solution */

			    dlacpy_("Full", &m, &nrhs, &copyb[1], &ldb, &work[
				    1], &ldwork);
			    dqrt16_("No transpose", &m, &n, &nrhs, &copya[1], 
				    &lda, &b[1], &ldb, &work[1], &ldwork, &
				    work[m * nrhs + 1], &result[15]);

/*                       Test 17:  Check norm of r'*A */

			    result[16] = 0.;
			    if (m > crank) {
				result[16] = dqrt17_("No transpose", &c__1, &
					m, &n, &nrhs, &copya[1], &lda, &b[1], 
					&ldb, &copyb[1], &ldb, &c__[1], &work[
					1], &lwork);
			    }

/*                       Test 18:  Check if x is in the rowspace of A */

			    result[17] = 0.;
			    if (n > crank) {
				result[17] = dqrt14_("No transpose", &m, &n, &
					nrhs, &copya[1], &lda, &b[1], &ldb, &
					work[1], &lwork);
			    }

/*                       Print information about the tests that did not */
/*                       pass the threshold. */

			    for (k = 7; k <= 18; ++k) {
				if (result[k - 1] >= *thresh) {
				    if (nfail == 0 && nerrs == 0) {
					alahd_(nout, path);
				    }
				    io___42.ciunit = *nout;
				    s_wsfe(&io___42);
				    do_fio(&c__1, (char *)&m, (ftnlen)sizeof(
					    integer));
				    do_fio(&c__1, (char *)&n, (ftnlen)sizeof(
					    integer));
				    do_fio(&c__1, (char *)&nrhs, (ftnlen)
					    sizeof(integer));
				    do_fio(&c__1, (char *)&nb, (ftnlen)sizeof(
					    integer));
				    do_fio(&c__1, (char *)&itype, (ftnlen)
					    sizeof(integer));
				    do_fio(&c__1, (char *)&k, (ftnlen)sizeof(
					    integer));
				    do_fio(&c__1, (char *)&result[k - 1], (
					    ftnlen)sizeof(doublereal));
				    e_wsfe();
				    ++nfail;
				}
/* L90: */
			    }
			    nrun += 12;

/* L100: */
			}
L110:
			;
		    }
/* L120: */
		}
/* L130: */
	    }
/* L140: */
	}
/* L150: */
    }

/*     Print a summary of the results. */

    alasvm_(path, nout, &nfail, &nrun, &nerrs);

    return 0;

/*     End of DDRVLS */

} /* ddrvls_ */