/* crqt02.f -- translated by f2c (version 20061008). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #include "f2c.h" #include "blaswrap.h" /* Common Block Declarations */ struct { char srnamt[32]; } srnamc_; #define srnamc_1 srnamc_ /* Table of constant values */ static complex c_b1 = {-1e10f,-1e10f}; static complex c_b9 = {0.f,0.f}; static complex c_b14 = {-1.f,0.f}; static complex c_b15 = {1.f,0.f}; static real c_b23 = -1.f; static real c_b24 = 1.f; /* Subroutine */ int crqt02_(integer *m, integer *n, integer *k, complex *a, complex *af, complex *q, complex *r__, integer *lda, complex *tau, complex *work, integer *lwork, real *rwork, real *result) { /* System generated locals */ integer a_dim1, a_offset, af_dim1, af_offset, q_dim1, q_offset, r_dim1, r_offset, i__1, i__2; /* Builtin functions */ /* Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen); /* Local variables */ real eps; integer info; extern /* Subroutine */ int cgemm_(char *, char *, integer *, integer *, integer *, complex *, complex *, integer *, complex *, integer *, complex *, complex *, integer *), cherk_(char *, char *, integer *, integer *, real *, complex *, integer *, real * , complex *, integer *); real resid, anorm; extern doublereal clange_(char *, integer *, integer *, complex *, integer *, real *), slamch_(char *); extern /* Subroutine */ int clacpy_(char *, integer *, integer *, complex *, integer *, complex *, integer *), claset_(char *, integer *, integer *, complex *, complex *, complex *, integer *); extern doublereal clansy_(char *, char *, integer *, complex *, integer *, real *); extern /* Subroutine */ int cungrq_(integer *, integer *, integer *, complex *, integer *, complex *, complex *, integer *, integer *); /* -- LAPACK test routine (version 3.1) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* CRQT02 tests CUNGRQ, which generates an m-by-n matrix Q with */ /* orthonornmal rows that is defined as the product of k elementary */ /* reflectors. */ /* Given the RQ factorization of an m-by-n matrix A, CRQT02 generates */ /* the orthogonal matrix Q defined by the factorization of the last k */ /* rows of A; it compares R(m-k+1:m,n-m+1:n) with */ /* A(m-k+1:m,1:n)*Q(n-m+1:n,1:n)', and checks that the rows of Q are */ /* orthonormal. */ /* Arguments */ /* ========= */ /* M (input) INTEGER */ /* The number of rows of the matrix Q to be generated. M >= 0. */ /* N (input) INTEGER */ /* The number of columns of the matrix Q to be generated. */ /* N >= M >= 0. */ /* K (input) INTEGER */ /* The number of elementary reflectors whose product defines the */ /* matrix Q. M >= K >= 0. */ /* A (input) COMPLEX array, dimension (LDA,N) */ /* The m-by-n matrix A which was factorized by CRQT01. */ /* AF (input) COMPLEX array, dimension (LDA,N) */ /* Details of the RQ factorization of A, as returned by CGERQF. */ /* See CGERQF for further details. */ /* Q (workspace) COMPLEX array, dimension (LDA,N) */ /* R (workspace) COMPLEX array, dimension (LDA,M) */ /* LDA (input) INTEGER */ /* The leading dimension of the arrays A, AF, Q and L. LDA >= N. */ /* TAU (input) COMPLEX array, dimension (M) */ /* The scalar factors of the elementary reflectors corresponding */ /* to the RQ factorization in AF. */ /* WORK (workspace) COMPLEX array, dimension (LWORK) */ /* LWORK (input) INTEGER */ /* The dimension of the array WORK. */ /* RWORK (workspace) REAL array, dimension (M) */ /* RESULT (output) REAL array, dimension (2) */ /* The test ratios: */ /* RESULT(1) = norm( R - A*Q' ) / ( N * norm(A) * EPS ) */ /* RESULT(2) = norm( I - Q*Q' ) / ( N * EPS ) */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Scalars in Common .. */ /* .. */ /* .. Common blocks .. */ /* .. */ /* .. Executable Statements .. */ /* Quick return if possible */ /* Parameter adjustments */ r_dim1 = *lda; r_offset = 1 + r_dim1; r__ -= r_offset; q_dim1 = *lda; q_offset = 1 + q_dim1; q -= q_offset; af_dim1 = *lda; af_offset = 1 + af_dim1; af -= af_offset; a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; --tau; --work; --rwork; --result; /* Function Body */ if (*m == 0 || *n == 0 || *k == 0) { result[1] = 0.f; result[2] = 0.f; return 0; } eps = slamch_("Epsilon"); /* Copy the last k rows of the factorization to the array Q */ claset_("Full", m, n, &c_b1, &c_b1, &q[q_offset], lda); if (*k < *n) { i__1 = *n - *k; clacpy_("Full", k, &i__1, &af[*m - *k + 1 + af_dim1], lda, &q[*m - *k + 1 + q_dim1], lda); } if (*k > 1) { i__1 = *k - 1; i__2 = *k - 1; clacpy_("Lower", &i__1, &i__2, &af[*m - *k + 2 + (*n - *k + 1) * af_dim1], lda, &q[*m - *k + 2 + (*n - *k + 1) * q_dim1], lda); } /* Generate the last n rows of the matrix Q */ s_copy(srnamc_1.srnamt, "CUNGRQ", (ftnlen)32, (ftnlen)6); cungrq_(m, n, k, &q[q_offset], lda, &tau[*m - *k + 1], &work[1], lwork, & info); /* Copy R(m-k+1:m,n-m+1:n) */ claset_("Full", k, m, &c_b9, &c_b9, &r__[*m - *k + 1 + (*n - *m + 1) * r_dim1], lda); clacpy_("Upper", k, k, &af[*m - *k + 1 + (*n - *k + 1) * af_dim1], lda, & r__[*m - *k + 1 + (*n - *k + 1) * r_dim1], lda); /* Compute R(m-k+1:m,n-m+1:n) - A(m-k+1:m,1:n) * Q(n-m+1:n,1:n)' */ cgemm_("No transpose", "Conjugate transpose", k, m, n, &c_b14, &a[*m - *k + 1 + a_dim1], lda, &q[q_offset], lda, &c_b15, &r__[*m - *k + 1 + (*n - *m + 1) * r_dim1], lda); /* Compute norm( R - A*Q' ) / ( N * norm(A) * EPS ) . */ anorm = clange_("1", k, n, &a[*m - *k + 1 + a_dim1], lda, &rwork[1]); resid = clange_("1", k, m, &r__[*m - *k + 1 + (*n - *m + 1) * r_dim1], lda, &rwork[1]); if (anorm > 0.f) { result[1] = resid / (real) max(1,*n) / anorm / eps; } else { result[1] = 0.f; } /* Compute I - Q*Q' */ claset_("Full", m, m, &c_b9, &c_b15, &r__[r_offset], lda); cherk_("Upper", "No transpose", m, n, &c_b23, &q[q_offset], lda, &c_b24, & r__[r_offset], lda); /* Compute norm( I - Q*Q' ) / ( N * EPS ) . */ resid = clansy_("1", "Upper", m, &r__[r_offset], lda, &rwork[1]); result[2] = resid / (real) max(1,*n) / eps; return 0; /* End of CRQT02 */ } /* crqt02_ */