/* cqpt01.f -- translated by f2c (version 20061008). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #include "f2c.h" #include "blaswrap.h" /* Table of constant values */ static integer c__10 = 10; static integer c__1 = 1; static complex c_b16 = {-1.f,0.f}; doublereal cqpt01_(integer *m, integer *n, integer *k, complex *a, complex * af, integer *lda, complex *tau, integer *jpvt, complex *work, integer *lwork) { /* System generated locals */ integer a_dim1, a_offset, af_dim1, af_offset, i__1, i__2, i__3, i__4; real ret_val; /* Local variables */ integer i__, j, info; real norma; extern /* Subroutine */ int ccopy_(integer *, complex *, integer *, complex *, integer *), caxpy_(integer *, complex *, complex *, integer *, complex *, integer *); real rwork[1]; extern doublereal clange_(char *, integer *, integer *, complex *, integer *, real *), slamch_(char *); extern /* Subroutine */ int xerbla_(char *, integer *), cunmqr_( char *, char *, integer *, integer *, integer *, complex *, integer *, complex *, complex *, integer *, complex *, integer *, integer *); /* -- LAPACK test routine (version 3.1) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* CQPT01 tests the QR-factorization with pivoting of a matrix A. The */ /* array AF contains the (possibly partial) QR-factorization of A, where */ /* the upper triangle of AF(1:k,1:k) is a partial triangular factor, */ /* the entries below the diagonal in the first k columns are the */ /* Householder vectors, and the rest of AF contains a partially updated */ /* matrix. */ /* This function returns ||A*P - Q*R||/(||norm(A)||*eps*M) */ /* Arguments */ /* ========= */ /* M (input) INTEGER */ /* The number of rows of the matrices A and AF. */ /* N (input) INTEGER */ /* The number of columns of the matrices A and AF. */ /* K (input) INTEGER */ /* The number of columns of AF that have been reduced */ /* to upper triangular form. */ /* A (input) COMPLEX array, dimension (LDA, N) */ /* The original matrix A. */ /* AF (input) COMPLEX array, dimension (LDA,N) */ /* The (possibly partial) output of CGEQPF. The upper triangle */ /* of AF(1:k,1:k) is a partial triangular factor, the entries */ /* below the diagonal in the first k columns are the Householder */ /* vectors, and the rest of AF contains a partially updated */ /* matrix. */ /* LDA (input) INTEGER */ /* The leading dimension of the arrays A and AF. */ /* TAU (input) COMPLEX array, dimension (K) */ /* Details of the Householder transformations as returned by */ /* CGEQPF. */ /* JPVT (input) INTEGER array, dimension (N) */ /* Pivot information as returned by CGEQPF. */ /* WORK (workspace) COMPLEX array, dimension (LWORK) */ /* LWORK (input) INTEGER */ /* The length of the array WORK. LWORK >= M*N+N. */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. Local Arrays .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Parameter adjustments */ af_dim1 = *lda; af_offset = 1 + af_dim1; af -= af_offset; a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; --tau; --jpvt; --work; /* Function Body */ ret_val = 0.f; /* Test if there is enough workspace */ if (*lwork < *m * *n + *n) { xerbla_("CQPT01", &c__10); return ret_val; } /* Quick return if possible */ if (*m <= 0 || *n <= 0) { return ret_val; } norma = clange_("One-norm", m, n, &a[a_offset], lda, rwork); i__1 = *k; for (j = 1; j <= i__1; ++j) { i__2 = min(j,*m); for (i__ = 1; i__ <= i__2; ++i__) { i__3 = (j - 1) * *m + i__; i__4 = i__ + j * af_dim1; work[i__3].r = af[i__4].r, work[i__3].i = af[i__4].i; /* L10: */ } i__2 = *m; for (i__ = j + 1; i__ <= i__2; ++i__) { i__3 = (j - 1) * *m + i__; work[i__3].r = 0.f, work[i__3].i = 0.f; /* L20: */ } /* L30: */ } i__1 = *n; for (j = *k + 1; j <= i__1; ++j) { ccopy_(m, &af[j * af_dim1 + 1], &c__1, &work[(j - 1) * *m + 1], &c__1) ; /* L40: */ } i__1 = *lwork - *m * *n; cunmqr_("Left", "No transpose", m, n, k, &af[af_offset], lda, &tau[1], & work[1], m, &work[*m * *n + 1], &i__1, &info); i__1 = *n; for (j = 1; j <= i__1; ++j) { /* Compare i-th column of QR and jpvt(i)-th column of A */ caxpy_(m, &c_b16, &a[jpvt[j] * a_dim1 + 1], &c__1, &work[(j - 1) * *m + 1], &c__1); /* L50: */ } ret_val = clange_("One-norm", m, n, &work[1], m, rwork) / (( real) max(*m,*n) * slamch_("Epsilon")); if (norma != 0.f) { ret_val /= norma; } return ret_val; /* End of CQPT01 */ } /* cqpt01_ */